Home
Class 11
PHYSICS
The figure represents a solid uniform sp...

The figure represents a solid uniform sphere of mass `M` and radius `R`. A spherical cavity of radius `r` is at a distance `a` from the centre of the sphere. The gravitational field inside the cavity is

A

non uniform

B

towards the centre of the cavity

C

directly proportional to a

D

uniform both in magnitude and direction

Text Solution

Verified by Experts

The correct Answer is:
C, D
Promotional Banner

Similar Questions

Explore conceptually related problems

A solid sphere of mass M and radius R has a spherical cavity of radius R/2 such that the centre of cavity is at a distance R/2 from the centre of the sphere. A point mass m is placed inside the cavity at a distance R/4 from the centre of sphere. The gravitational force on mass m is

A solid sphere of mass M and radius R has a spherical cavity of radius R/2 such that the centre of cavity is at a distance R/2 from the centre of the sphere. A point mass m is placed inside the cavity at a distanace R/4 from the centre of sphere. The gravitational force on mass m is

A uniform ring of mas m and radius a is placed directly above a uniform sphere of mass M and of equal radius. The centre of the ring is at a distance sqrt3 a from the centre of the sphere. Find the gravitational force exerted by the sphere on the ring.

A uniform ring of mas m and radius a is placed directly above a uniform sphere of mass M and of equal radius. The centre of the ring is at a distance sqrt3 a from the centre of the sphere. Find the gravitational force exerted by the sphere on the ring.

A uniform ring of mas m and radius a is placed directly above a uniform sphere of mass M and of equal radius. The center of the ring is at a distance sqrt3 a from the center of the sphere. Find the gravitational force exerted by the sphere on the ring.

A particle of mass m is placed at a distance of 4R from the centre of a huge uniform sphere of mass M and radius R . A spherical cavity of diameter R is made in the sphere as shown in the figure. If the gravitational interaction potential energy of the system of mass m and the remaining sphere after making the cavity is (lambdaGMm)/(28R) . Find the value of lambda

A cavity of radius R//2 is made inside a solid sphere of radius R . The centre of the cavity is located at a distance R//2 from the centre of the sphere. The gravitational force on a particle of a mass 'm' at a distance R//2 from the centre of the sphere on the line joining both the centres of sphere and cavity is (opposite to the centre of cavity). [Here g=GM//R^(2) , where M is the mass of the solide sphere]

A cavity of radius R//2 is made inside a solid sphere of radius R . The centre of the cavity is located at a distance R//2 from the centre of the sphere. The gravitational force on a particle of a mass 'm' at a distance R//2 from the centre of the sphere on the line joining both the centres of sphere and cavity is (opposite to the centre of cavity). [Here g=GM//R^(2) , where M is the mass of the solide sphere]

From a uniform sphere of mass M and radius R a cavity of diameter R is created as shown. Find the ratio of moment of inertia of the sphere left about "AA"' and BB' .

Two spheres one of mass M has radius R . Another sphere has mass 4M and radius 2R . The centre to centre distance between them is 12 R . Find the distance from the centre of smaller sphere where (a) net gravitational field is zero, (b) net gravitational potential is half the potential on the surface of larger sphere.