Home
Class 11
MATHS
Find Lt(xto1)(2x^(2)+3x+4)....

Find `Lt_(xto1)(2x^(2)+3x+4)`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the limit \( \lim_{x \to 1} (2x^2 + 3x + 4) \), we can follow these steps: ### Step 1: Identify the function The function we are working with is: \[ f(x) = 2x^2 + 3x + 4 \] ### Step 2: Substitute the limit value We need to evaluate the limit as \( x \) approaches 1. We can directly substitute \( x = 1 \) into the function: \[ f(1) = 2(1)^2 + 3(1) + 4 \] ### Step 3: Calculate each term Now, we calculate each term in the expression: - \( 2(1)^2 = 2 \) - \( 3(1) = 3 \) - The constant term is \( 4 \) ### Step 4: Add the results Now we add these results together: \[ f(1) = 2 + 3 + 4 \] ### Step 5: Final calculation Calculating the sum: \[ 2 + 3 = 5 \] \[ 5 + 4 = 9 \] ### Conclusion Thus, the limit is: \[ \lim_{x \to 1} (2x^2 + 3x + 4) = 9 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find Lt_(xto1)(2x-1)/(3x^(2)-4x+5)

Find Lt_(xtooo)((2x+3)/(3x-1)) .

Evauate lim_(xto1) (x^(4)-3x^(4)+2)/(x^(3)-5x^(2)+3x+1).

Evaluate the following limits : Lim_(xto1) (x-1)/(2x^(2)-7x+5)

Evaluate Lt_(xtooo)(6x^(2)-x+7)/(3x^2-2x+3)

Evaluate the following: lim_(xto1/3)(3x^2+5x-2)/(9x^2-1)

Let f(x)={{:(5x-4",",0ltxle1),(4x^(3)-3x",",1ltxlt2.):} Find lim_(xto1)f(x).

Evaluate lim_(xto1) ((2)/(1-x^(2))-(1)/(1-x)).

lim_(xto1)(sin^(2)(x^(3)+x^(2)+x-3))/(1-cos(x^(2)-4x+3)) has the value equal to

Evaluate lim_(xto1)(x+x^(2)+…….+x^(n)-n)/(x-1)