Home
Class 11
CHEMISTRY
For a van der Waal's gas, determine Boyl...

For a van der Waal's gas, determine Boyle Temperature (given a = 4.5 atm`L^2 mol^(-2) , b = 0.9 L mol^(-1) and R = 0.082 L atm K^(-1) mol^(-1)`]

A

`609.8 K`

B

`6.09 K`

C

`273 K`

D

`60.98 K`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the Boyle Temperature for a van der Waals gas, we can use the formula: \[ T_B = \frac{a}{Rb} \] where: - \( a \) is the van der Waals constant related to attractive forces, - \( b \) is the van der Waals constant related to the volume occupied by the gas molecules, - \( R \) is the universal gas constant. ### Step-by-Step Solution: 1. **Identify the given values:** - \( a = 4.5 \, \text{atm} \cdot \text{L}^2 \cdot \text{mol}^{-2} \) - \( b = 0.9 \, \text{L} \cdot \text{mol}^{-1} \) - \( R = 0.082 \, \text{L} \cdot \text{atm} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} \) 2. **Substitute the values into the formula:** \[ T_B = \frac{4.5}{0.082 \times 0.9} \] 3. **Calculate the denominator:** - First, calculate \( R \times b \): \[ R \times b = 0.082 \, \text{L} \cdot \text{atm} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} \times 0.9 \, \text{L} \cdot \text{mol}^{-1} = 0.0738 \, \text{L}^2 \cdot \text{atm} \cdot \text{K}^{-1} \cdot \text{mol}^{-2} \] 4. **Now, divide \( a \) by \( R \times b \):** \[ T_B = \frac{4.5}{0.0738} \approx 60.98 \, \text{K} \] 5. **Conclude the result:** The Boyle Temperature \( T_B \) for the van der Waals gas is approximately \( 60.98 \, \text{K} \). ### Final Answer: \[ T_B \approx 60.98 \, \text{K} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Calculate the pressure exerted by one mole of methane in a 450 mL container at 25^@C using van der Waals' equation. What pressure will be predicted by ideal gas equation ? (Given : a = 2.253 " atm " L^2 mol^(-2), b = 0.0428 L mol^(-2), R =0.0821 L " atm " K^(-1) mol^(_1))

The van der Waals' constantes for a gas are a=3.6 atmL^(2)mol^(-2),b=0.6Lmol^(-1) .If R=0.08LatmK^(-1)mol^(-1) and the Boyle's temperature (K) is T_(B) of this gas, then what is the value of (T_(B))/(15) ?

The values of the van der Waals' constant a for some gases are given below. H_2 = 0.245 " atm " L^2 mol^(-2) O_2 = 1.360 " atm " L^2 mol^(-2) CO_2 = 3.590 " atm " L^2 mol^(-2) NH_3 = 4.170 " atm " L^2 mol^(-2) Arrange these gases in the decreasing order of their liquefaction tendencies.

The van der Waal's constants a & b of CO_(2) are 3.64 L^(2) mol^(-2) bar & 0.04 L mol^(-1) respectively. The value of R is 0.083 bar dm^(3)mol^(-1)K^(-1) . If one mole of CO_(2) is confined to a volume of 0.15L at 300 K , then the pressure (in bar) eaxerted by the gas is :

The osmotic pressure of solution containing 34.2 g of cane sugar (molar mass = 342 g mol^(-1) ) in 1 L of solution at 20^(@)C is (Given R = 0.082 L atm K^(-1) mol^(-1) )

The density of O_2 gas at 127^o C and 4.0 atm pressure is (R = 0.082 L atm K^-1 mol^-1 )

What is the compressibility factor (Z) for 0.02 mole of a van der Waals's gas at pressure of 0.1 atm. Assume the size of gas molecules is negligible. Given : RT=20 L atm mol^(-1) and a=1000 atm L^(2) mol^(-2)

Pressure exerted by 1 mole of methane in a 0.25 litre container at 300K using Vander Waal’s equation : (Given : a = 2.253 "atm" l^(2) "mol"^(-2) and b = 0.0428 l "mol"^(-1) ) is

Using van der Waals' equation, find the constant 'a' (in atm L^(2)mol^(-2) ) when two moles of a gas confined in 4 L flask exerts a pressure of 11.0 atmospheres at a temperature of 300 K. The value of b is 0.05 L mol^(-1) .(R = 0.082 atm.L/K mol)

The volume to be excluded due to only two molecules of a gas in collision with a fixed point of impact is 0.09 l mol^(-1) . If the value of 'a' is 3.6 atm L^(2) mol^(-2) , Calculate Boyle temperature. (R = 0.08 L atm K^(-1) m^(-1) )