Home
Class 14
MATHS
If N = ( sqrt7 - sqrt3) //(sqrt7 + sqrt3...

If `N = ( sqrt7 - sqrt3) //(sqrt7 + sqrt3),` then what is the value of N + (1/N)?

A

`2 sqrt2`

B

5

C

10

D

13

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( N + \frac{1}{N} \) where \( N = \frac{\sqrt{7} - \sqrt{3}}{\sqrt{7} + \sqrt{3}} \). ### Step-by-Step Solution: 1. **Calculate \( N \)**: \[ N = \frac{\sqrt{7} - \sqrt{3}}{\sqrt{7} + \sqrt{3}} \] 2. **Find \( \frac{1}{N} \)**: To find \( \frac{1}{N} \), we can take the reciprocal of \( N \): \[ \frac{1}{N} = \frac{\sqrt{7} + \sqrt{3}}{\sqrt{7} - \sqrt{3}} \] 3. **Calculate \( N + \frac{1}{N} \)**: Now we need to add \( N \) and \( \frac{1}{N} \): \[ N + \frac{1}{N} = \frac{\sqrt{7} - \sqrt{3}}{\sqrt{7} + \sqrt{3}} + \frac{\sqrt{7} + \sqrt{3}}{\sqrt{7} - \sqrt{3}} \] 4. **Find a common denominator**: The common denominator for the two fractions is \( (\sqrt{7} + \sqrt{3})(\sqrt{7} - \sqrt{3}) \): \[ N + \frac{1}{N} = \frac{(\sqrt{7} - \sqrt{3})^2 + (\sqrt{7} + \sqrt{3})^2}{(\sqrt{7} + \sqrt{3})(\sqrt{7} - \sqrt{3})} \] 5. **Expand the numerators**: - For \( (\sqrt{7} - \sqrt{3})^2 \): \[ (\sqrt{7})^2 - 2\sqrt{7}\sqrt{3} + (\sqrt{3})^2 = 7 - 2\sqrt{21} + 3 = 10 - 2\sqrt{21} \] - For \( (\sqrt{7} + \sqrt{3})^2 \): \[ (\sqrt{7})^2 + 2\sqrt{7}\sqrt{3} + (\sqrt{3})^2 = 7 + 2\sqrt{21} + 3 = 10 + 2\sqrt{21} \] 6. **Combine the results**: \[ N + \frac{1}{N} = \frac{(10 - 2\sqrt{21}) + (10 + 2\sqrt{21})}{(\sqrt{7})^2 - (\sqrt{3})^2} \] \[ = \frac{20}{7 - 3} = \frac{20}{4} = 5 \] ### Final Result: Thus, the value of \( N + \frac{1}{N} \) is \( 5 \).
Promotional Banner

Similar Questions

Explore conceptually related problems

If N = sqrt7 - sqrt3 , then what is the value of (1/N)?

(sqrt7-sqrt3)^2

If N=sqrt8-sqrt5 , then what is the value of (1/N)?