Home
Class 14
MATHS
Which one among sqrt10 + sqrt4, sqrt11 +...

Which one among `sqrt10 + sqrt4, sqrt11 + sqrt3 , sqrt7 + sqrt7` is the smallest number ?

A

`sqrt10 + sqrt4`

B

`sqrt11 + sqrt3`

C

`sqrt7 + sqrt7`

D

All are equal

Text Solution

AI Generated Solution

The correct Answer is:
To determine which among the three expressions \( \sqrt{10} + \sqrt{4} \), \( \sqrt{11} + \sqrt{3} \), and \( \sqrt{7} + \sqrt{7} \) is the smallest, we can follow these steps: ### Step 1: Calculate each expression 1. **First Expression: \( \sqrt{10} + \sqrt{4} \)** - \( \sqrt{4} = 2 \) - Therefore, \( \sqrt{10} + \sqrt{4} = \sqrt{10} + 2 \) 2. **Second Expression: \( \sqrt{11} + \sqrt{3} \)** - This remains as \( \sqrt{11} + \sqrt{3} \) 3. **Third Expression: \( \sqrt{7} + \sqrt{7} \)** - This simplifies to \( 2\sqrt{7} \) ### Step 2: Square each expression to compare their sizes 1. **Square of the First Expression:** \[ (\sqrt{10} + 2)^2 = (\sqrt{10})^2 + 2 \cdot \sqrt{10} \cdot 2 + 2^2 = 10 + 4\sqrt{10} + 4 = 14 + 4\sqrt{10} \] 2. **Square of the Second Expression:** \[ (\sqrt{11} + \sqrt{3})^2 = (\sqrt{11})^2 + 2 \cdot \sqrt{11} \cdot \sqrt{3} + (\sqrt{3})^2 = 11 + 2\sqrt{33} + 3 = 14 + 2\sqrt{33} \] 3. **Square of the Third Expression:** \[ (2\sqrt{7})^2 = 4 \cdot 7 = 28 \] ### Step 3: Compare the squared values - **First Expression:** \( 14 + 4\sqrt{10} \) - **Second Expression:** \( 14 + 2\sqrt{33} \) - **Third Expression:** \( 28 \) ### Step 4: Estimate the square roots 1. **Estimate \( \sqrt{10} \):** Approximately \( 3.16 \) - Thus, \( 4\sqrt{10} \approx 4 \times 3.16 = 12.64 \) - So, \( 14 + 4\sqrt{10} \approx 14 + 12.64 = 26.64 \) 2. **Estimate \( \sqrt{33} \):** Approximately \( 5.74 \) - Thus, \( 2\sqrt{33} \approx 2 \times 5.74 = 11.48 \) - So, \( 14 + 2\sqrt{33} \approx 14 + 11.48 = 25.48 \) 3. **Third Expression:** \( 28 \) ### Step 5: Conclusion Now we compare the approximated values: - First Expression: \( \approx 26.64 \) - Second Expression: \( \approx 25.48 \) - Third Expression: \( 28 \) The smallest value is from the **Second Expression** \( \sqrt{11} + \sqrt{3} \). ### Final Answer The smallest number among \( \sqrt{10} + \sqrt{4} \), \( \sqrt{11} + \sqrt{3} \), and \( \sqrt{7} + \sqrt{7} \) is \( \sqrt{11} + \sqrt{3} \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

( sqrt3 + sqrt7)^2

(sqrt3 + sqrt7)^2

sqrt7 - 3/5 sqrt7 + 2sqrt7

Which value among sqrt(11) + sqrt(5), sqrt(14) + sqrt(2), sqrt(8) + sqrt(8) is the largest?

sqrt(7+4sqrt3) - sqrt(7-4sqrt3) =

(3 + sqrt7)(3 - sqrt7)

(2sqrt2 - sqrt7)/(2sqrt2 + sqrt7)