Home
Class 14
MATHS
What is simplified value of ((1)/("cosec...

What is simplified value of `((1)/("cosec" theta + cot theta)) ^(2)` ?

A

`"cosec" theta + tan theta`

B

`sin theta + cos theta`

C

`(1 - cos theta)//(1 + cos theta)`

D

`(1 - sin theta) //(1 - cos theta)//(1 + cos theta)`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \(\left(\frac{1}{\csc \theta + \cot \theta}\right)^2\), we will follow these steps: ### Step 1: Rewrite the trigonometric functions Recall the definitions of cosecant and cotangent: - \(\csc \theta = \frac{1}{\sin \theta}\) - \(\cot \theta = \frac{\cos \theta}{\sin \theta}\) Thus, we can rewrite the expression: \[ \csc \theta + \cot \theta = \frac{1}{\sin \theta} + \frac{\cos \theta}{\sin \theta} = \frac{1 + \cos \theta}{\sin \theta} \] ### Step 2: Substitute back into the expression Now, substitute this back into the original expression: \[ \left(\frac{1}{\csc \theta + \cot \theta}\right)^2 = \left(\frac{1}{\frac{1 + \cos \theta}{\sin \theta}}\right)^2 \] ### Step 3: Simplify the fraction This simplifies to: \[ \left(\frac{\sin \theta}{1 + \cos \theta}\right)^2 \] ### Step 4: Expand the square Now, we can expand the square: \[ \left(\frac{\sin \theta}{1 + \cos \theta}\right)^2 = \frac{\sin^2 \theta}{(1 + \cos \theta)^2} \] ### Step 5: Use the Pythagorean identity Recall that \(\sin^2 \theta = 1 - \cos^2 \theta\). Thus, we can write: \[ \frac{\sin^2 \theta}{(1 + \cos \theta)^2} = \frac{1 - \cos^2 \theta}{(1 + \cos \theta)^2} \] ### Step 6: Factor the numerator The numerator can be factored as: \[ 1 - \cos^2 \theta = (1 - \cos \theta)(1 + \cos \theta) \] ### Step 7: Substitute back into the expression Substituting this back gives: \[ \frac{(1 - \cos \theta)(1 + \cos \theta)}{(1 + \cos \theta)^2} \] ### Step 8: Cancel out common terms Now, we can cancel \(1 + \cos \theta\) from the numerator and the denominator: \[ \frac{1 - \cos \theta}{1 + \cos \theta} \] ### Final Answer Thus, the simplified value of \(\left(\frac{1}{\csc \theta + \cot \theta}\right)^2\) is: \[ \frac{1 - \cos \theta}{1 + \cos \theta} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of ("cosec" theta -cot theta)^(2) is

cosec^2 theta - cot^2 theta = 1 +…..

What is the simplified value of tan ((theta )/( 2)) + cot ((theta )/( 2)) ?

What is the simplified value of (sqrt(sec^(2)theta+cosec^(2)theta))/(2) ?

What is the simplified value of tan ((theta)/(2))+cot((theta)/(2)) ?

What is the simplified value of (3)/(cosec^(2)theta)+(5)/(1+tan^(2)theta)-2cos^(2)theta ?