Home
Class 14
MATHS
If x sin theta = ( 5 sqrt3)/(2) and x co...

If `x sin theta = ( 5 sqrt3)/(2) and x cos theta = (5)/(2) ` then what is the value of x ?

A

`sqrt3`

B

`1 //2`

C

`sqrt3//2`

D

`5`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( x \) given the equations \( x \sin \theta = \frac{5\sqrt{3}}{2} \) and \( x \cos \theta = \frac{5}{2} \), we can follow these steps: ### Step-by-Step Solution: 1. **Write down the equations**: \[ x \sin \theta = \frac{5\sqrt{3}}{2} \quad \text{(Equation 1)} \] \[ x \cos \theta = \frac{5}{2} \quad \text{(Equation 2)} \] 2. **Divide Equation 1 by Equation 2**: \[ \frac{x \sin \theta}{x \cos \theta} = \frac{\frac{5\sqrt{3}}{2}}{\frac{5}{2}} \] This simplifies to: \[ \frac{\sin \theta}{\cos \theta} = \frac{5\sqrt{3}/2}{5/2} \] 3. **Simplify the right side**: \[ \frac{\sin \theta}{\cos \theta} = \frac{5\sqrt{3}}{2} \cdot \frac{2}{5} = \sqrt{3} \] Thus, we have: \[ \tan \theta = \sqrt{3} \] 4. **Find the angle \( \theta \)**: The angle \( \theta \) where \( \tan \theta = \sqrt{3} \) is: \[ \theta = 60^\circ \] 5. **Substitute \( \theta \) back into Equation 2** to find \( x \): Using \( \cos 60^\circ = \frac{1}{2} \): \[ x \cos 60^\circ = \frac{5}{2} \] This becomes: \[ x \cdot \frac{1}{2} = \frac{5}{2} \] 6. **Solve for \( x \)**: Multiply both sides by 2: \[ x = 5 \] ### Final Answer: \[ x = 5 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If sec theta ( cos theta + sin theta) = sqrt""2 , then what is the value of (2 sin theta )// (cos theta - sin theta ) ?

If sec theta (cos theta + sin theta) = sqrt2 , then what is the value of (2 sin theta)//(cos theta- sin theta) ? यदि sec theta (cos theta + sin theta) = sqrt2 है,तो (2 sin theta)//(cos theta- sin theta) का मान क्या है?

x sin ^ (3) theta + y cos ^ (3) theta = sin theta cos theta and x sin theta = y cos theta Find the value of x ^ (2) + y ^ (2)

If x sin^(3) theta + y cos^(3) theta = sin theta cos theta ne 0 and x sin theta - y cos theta = 0 , then value of (x^(2) + y^(2)) is :

If x sin^(3) theta + y cos^(3) theta = sin theta cos theta and x sin theta = y cos theta , then the value of x^(2) + y^(2) is :

If x cos theta + y sin theta =2 is perpendicular to the line x-y =3 then what is one of the value of theta ?

If x=a sin theta and y=b cos theta, what is the value of b^(2)x^(2)+a^(2)y^(2)?

If x = 3 sin theta + 4 cos theta and y = 3 cos theta - 4 sin theta then prove that x^(2) + y^(2) = 25 .