Home
Class 14
MATHS
What is the value of 2^2+6^2+10^2+14^2-1...

What is the value of `2^2+6^2+10^2+14^2-1^2-5^2-9^2-13^2`?

A

0

B

15

C

30

D

60

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(2^2 + 6^2 + 10^2 + 14^2 - 1^2 - 5^2 - 9^2 - 13^2\), we can break it down step by step. ### Step 1: Calculate the squares of each number First, we will calculate the squares of the numbers involved in the expression. - \(2^2 = 4\) - \(6^2 = 36\) - \(10^2 = 100\) - \(14^2 = 196\) - \(1^2 = 1\) - \(5^2 = 25\) - \(9^2 = 81\) - \(13^2 = 169\) ### Step 2: Substitute the squares back into the expression Now we substitute these values back into the expression: \[ 4 + 36 + 100 + 196 - 1 - 25 - 81 - 169 \] ### Step 3: Group the positive and negative terms Next, we can group the positive and negative terms: Positive terms: \[ 4 + 36 + 100 + 196 = 336 \] Negative terms: \[ 1 + 25 + 81 + 169 = 276 \] ### Step 4: Subtract the sum of negative terms from the sum of positive terms Now we subtract the sum of the negative terms from the sum of the positive terms: \[ 336 - 276 = 60 \] ### Final Answer Thus, the value of the expression \(2^2 + 6^2 + 10^2 + 14^2 - 1^2 - 5^2 - 9^2 - 13^2\) is \(60\). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

What is the value of 1^2+3^2+5^2+……15^2 ?

What is the value of 14^2+16^2+18^2+...+30^2

What is the value of 10-[6-4- (2 div 1-2)] ?

What is the value of 6^(2) – 5^(2) + 8^(2) – 7^(2) + 10^(2) – 9^(2) + 12^(2) – 11^(2) + 14^(2) – 13^(2) ?