Home
Class 14
MATHS
What is the simplified value of ((cotthe...

What is the simplified value of `((cottheta+tantheta)/(sectheta))`?

A

`1-cos^2""theta`

B

`2sintheta`

C

`cosectheta`

D

`sec^2""theta`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \(\frac{\cot \theta + \tan \theta}{\sec \theta}\), we will follow these steps: ### Step 1: Rewrite the trigonometric functions We know the definitions of the trigonometric functions: - \(\cot \theta = \frac{\cos \theta}{\sin \theta}\) - \(\tan \theta = \frac{\sin \theta}{\cos \theta}\) - \(\sec \theta = \frac{1}{\cos \theta}\) Substituting these definitions into the expression gives us: \[ \frac{\cot \theta + \tan \theta}{\sec \theta} = \frac{\frac{\cos \theta}{\sin \theta} + \frac{\sin \theta}{\cos \theta}}{\frac{1}{\cos \theta}} \] ### Step 2: Combine the terms in the numerator To combine \(\frac{\cos \theta}{\sin \theta}\) and \(\frac{\sin \theta}{\cos \theta}\), we need a common denominator: \[ \frac{\cos^2 \theta + \sin^2 \theta}{\sin \theta \cos \theta} \] Using the Pythagorean identity, we know that \(\cos^2 \theta + \sin^2 \theta = 1\), so we can simplify this to: \[ \frac{1}{\sin \theta \cos \theta} \] ### Step 3: Substitute back into the expression Now we substitute this back into our expression: \[ \frac{\frac{1}{\sin \theta \cos \theta}}{\frac{1}{\cos \theta}} = \frac{1}{\sin \theta \cos \theta} \times \cos \theta = \frac{1}{\sin \theta} \] ### Step 4: Final simplification The expression \(\frac{1}{\sin \theta}\) is equal to \(\csc \theta\). Thus, the simplified value of \(\frac{\cot \theta + \tan \theta}{\sec \theta}\) is: \[ \csc \theta \]
Promotional Banner

Similar Questions

Explore conceptually related problems

(tantheta-sectheta)^2

What is the simplified value of ((1)/(cosectheta+cottheta))^(2) ?

tantheta-tantheta/2=sectheta/2

Find the value of cottheta*sintheta*sectheta .

sectheta/tantheta=?

What is the value of (sectheta)/(tantheta+cottheta) ?

If cottheta=(4)/(3) and theta is acute, then find the value of (tantheta+cottheta)/(sectheta+cosectheta) .

tantheta+sectheta=sqrt(3)

The simplified value of (1+tantheta+sectheta)(1+cottheta-cosectheta) is

If sectheta=(13)/(12)andtheta is acute , theh what is the value of (sqrt(cottheta+tantheta)) ?