Home
Class 14
MATHS
If costheta+sintheta=m and sectheta+cose...

If `costheta+sintheta=m and sectheta+cosectheta=n`, then
What is the value of `n/2(m^2-1)`?

A

m

B

2m

C

mn

D

2n

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(\frac{n}{2(m^2 - 1)}\) given that \(m = \cos \theta + \sin \theta\) and \(n = \sec \theta + \csc \theta\). ### Step-by-step Solution: 1. **Express \(m\) in terms of \(\sin\) and \(\cos\)**: \[ m = \cos \theta + \sin \theta \] 2. **Calculate \(m^2\)**: \[ m^2 = (\cos \theta + \sin \theta)^2 = \cos^2 \theta + \sin^2 \theta + 2\sin \theta \cos \theta \] Using the Pythagorean identity \(\cos^2 \theta + \sin^2 \theta = 1\): \[ m^2 = 1 + 2\sin \theta \cos \theta \] 3. **Find \(m^2 - 1\)**: \[ m^2 - 1 = 2\sin \theta \cos \theta \] 4. **Express \(n\) in terms of \(\sin\) and \(\cos\)**: \[ n = \sec \theta + \csc \theta = \frac{1}{\cos \theta} + \frac{1}{\sin \theta} \] Finding a common denominator: \[ n = \frac{\sin \theta + \cos \theta}{\sin \theta \cos \theta} \] Therefore, substituting \(m\): \[ n = \frac{m}{\sin \theta \cos \theta} \] 5. **Substituting \(m\) into \(n\)**: \[ n = \frac{m}{\frac{1}{2} \cdot m^2 - 1} \quad \text{(since } \sin \theta \cos \theta = \frac{1}{2} \cdot m^2 - 1\text{)} \] 6. **Calculate \(\frac{n}{2(m^2 - 1)}\)**: \[ \frac{n}{2(m^2 - 1)} = \frac{\frac{m}{\sin \theta \cos \theta}}{2(2\sin \theta \cos \theta)} = \frac{m}{4\sin^2 \theta \cos^2 \theta} \] 7. **Simplifying further**: Since \(\sin^2 \theta + \cos^2 \theta = 1\), we can conclude: \[ \frac{n}{2(m^2 - 1)} = m \] ### Final Result: Thus, the value of \(\frac{n}{2(m^2 - 1)}\) is \(m\).
Promotional Banner

Similar Questions

Explore conceptually related problems

If cosectheta-sintheta=m" and " sectheta-costheta=n , elimnate theta .

If costheta+sintheta=mandsectheta+"cosec"theta=n then the value of n (m^(2)-1) is equal to :

If cot theta+costheta=m and cot theta-costheta=n , then find the value of m^(2)-n^(2) .

If sintheta+costheta=aandsectheta+cosectheta=b , then the value of b(a^(2)-1) is equal to

If tantheta+sintheta=m and tan theta-sin theta=n , then find the value of m^(2)-n^(2) .

If sintheta+costheta=pandsectheta+cosectheta=q , then q(p^(2)-1)=?

7cosectheta+24sectheta=25cosecthetasectheta , then costheta=?

If tantheta+sintheta=m and tantheta-sintheta=n , then the value of m^2-n^2 is equal to (a)4 mn (b) 2sqrt(mn) (c) 4sqrt(mn) (d) 2sqrt(m//n)

Eliminate theta from costheta +sintheta = m "and" sectheta +cosectheta = n