Home
Class 10
MATHS
prove that- sin^2theta/cos^2theta+cos^2...

prove that- `sin^2theta/cos^2theta+cos^2theta/sin^2theta=1/ (sin^2thetacos^2theta)-2`

Promotional Banner

Similar Questions

Explore conceptually related problems

sin^4theta+2sin^2thetacos^2theta=1-cos^4 theta

cos theta+sin theta=cos2 theta+sin2 theta

(1+sin2theta+cos2theta)/(1+sin2theta-cos2theta) =

Prove that cos^(6)theta+sin^(6)theta=1-3sin^(2)theta cos^(2)theta

2(cos theta+cos2 theta)+(1+2cos theta)sin2 theta=2sin theta

The value of sin^(8)theta+cos^(8)theta+sin^(6)theta cos^(2)theta+3sin^(4)theta cos^(2)theta+cos^(6)theta sin^(2)theta+3sin^(2)thetacos^(4)theta is equal to

Prove the following identities: 2(sin^(6)theta+cos^(6)theta)-3(sin^(4)theta+cos^(4)theta)+1=0sin^(6)theta+cos^(6)theta+3sin^(2)theta cos^(2)theta=1(sin^(8)theta-cos^(8)theta)=(sin^(2)theta-cos^(2)theta)(1-2sin^(2)theta cos^(2)theta)

(sin3 theta+cos3 theta)/(cos theta-sin theta)=1+2xx sin2 theta

sin theta+sin2 theta+sin3 theta=1+cos theta+cos2 theta

Prove the following identity: ((1)/(sec^(2)theta-cos^(2)theta)+(1)/(cos ec^(2)theta-sin^(2)theta))sin^(2)theta cos^(2)theta=(1-sin^(2)theta cos^(2)theta)/(2+sin^(2)cos^(2)theta)