Home
Class 14
MATHS
9 (1)/(3) + 7 (1)/(2) = ? + 5 (1)/(6) + ...

`9 (1)/(3) + 7 (1)/(2) = ? + 5 (1)/(6) + 6 (1)/(3)`

A

4

B

`4(1)/(2)`

C

5

D

`5(1)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(9 \frac{1}{3} + 7 \frac{1}{2} = ? + 5 \frac{1}{6} + 6 \frac{1}{3}\), we will first convert all mixed numbers into improper fractions. ### Step 1: Convert mixed numbers to improper fractions 1. **Convert \(9 \frac{1}{3}\)**: \[ 9 \frac{1}{3} = 9 \times 3 + 1 = 27 + 1 = \frac{28}{3} \] 2. **Convert \(7 \frac{1}{2}\)**: \[ 7 \frac{1}{2} = 7 \times 2 + 1 = 14 + 1 = \frac{15}{2} \] 3. **Convert \(5 \frac{1}{6}\)**: \[ 5 \frac{1}{6} = 5 \times 6 + 1 = 30 + 1 = \frac{31}{6} \] 4. **Convert \(6 \frac{1}{3}\)**: \[ 6 \frac{1}{3} = 6 \times 3 + 1 = 18 + 1 = \frac{19}{3} \] ### Step 2: Rewrite the equation with improper fractions Now, we can rewrite the equation: \[ \frac{28}{3} + \frac{15}{2} = ? + \frac{31}{6} + \frac{19}{3} \] ### Step 3: Move all terms to one side Rearranging gives: \[ ? = \frac{28}{3} + \frac{15}{2} - \frac{31}{6} - \frac{19}{3} \] ### Step 4: Find a common denominator The least common multiple (LCM) of the denominators \(3\), \(2\), and \(6\) is \(6\). We will convert each fraction to have a denominator of \(6\): 1. **Convert \(\frac{28}{3}\)**: \[ \frac{28}{3} = \frac{28 \times 2}{3 \times 2} = \frac{56}{6} \] 2. **Convert \(\frac{15}{2}\)**: \[ \frac{15}{2} = \frac{15 \times 3}{2 \times 3} = \frac{45}{6} \] 3. **Convert \(\frac{19}{3}\)**: \[ \frac{19}{3} = \frac{19 \times 2}{3 \times 2} = \frac{38}{6} \] ### Step 5: Substitute back into the equation Now substituting back, we have: \[ ? = \frac{56}{6} + \frac{45}{6} - \frac{31}{6} - \frac{38}{6} \] ### Step 6: Combine the fractions Combine the fractions: \[ ? = \frac{56 + 45 - 31 - 38}{6} = \frac{32}{6} \] ### Step 7: Simplify the fraction Now simplify \(\frac{32}{6}\): \[ ? = \frac{16}{3} \] ### Step 8: Convert back to mixed number Convert \(\frac{16}{3}\) back to a mixed number: \[ \frac{16}{3} = 5 \frac{1}{3} \] ### Final Answer Thus, the value of \(?\) is: \[ ? = 5 \frac{1}{3} \]
Promotional Banner

Topper's Solved these Questions

  • NUMBER SYSTEM, SIMPLIFICATION AND APPROXIMATION

    ADDA247|Exercise MAINS QUESTIONS |70 Videos
  • NUMBER SERIES

    ADDA247|Exercise PREVIOUS YEAR QUESTIONS|63 Videos
  • PERCENTAGE

    ADDA247|Exercise PREVIOUS YEAR QUESTION|26 Videos