Home
Class 14
MATHS
(3^(4) xx 9^(7)) div 27^(6) = 3^(?)...

`(3^(4) xx 9^(7)) div 27^(6) = 3^(?)`

A

2

B

3

C

0

D

6

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \((3^{4} \times 9^{7}) \div 27^{6} = 3^{?}\), we will follow these steps: ### Step 1: Rewrite the bases in terms of 3 First, we need to express \(9\) and \(27\) in terms of base \(3\): - \(9 = 3^2\) - \(27 = 3^3\) ### Step 2: Substitute the values into the equation Now, we can rewrite the equation: \[ (3^{4} \times (3^2)^{7}) \div (3^3)^{6} \] ### Step 3: Apply the power of a power property Using the property \((a^m)^n = a^{m \cdot n}\), we can simplify: \[ (3^{4} \times 3^{14}) \div 3^{18} \] Here, \( (3^2)^{7} = 3^{2 \times 7} = 3^{14} \) and \( (3^3)^{6} = 3^{3 \times 6} = 3^{18} \). ### Step 4: Combine the powers in the numerator Now, we can add the exponents in the numerator: \[ 3^{4 + 14} \div 3^{18} \] This simplifies to: \[ 3^{18} \div 3^{18} \] ### Step 5: Apply the division property of exponents Using the property \(\frac{a^m}{a^n} = a^{m-n}\): \[ 3^{18 - 18} = 3^{0} \] ### Step 6: Set the equation equal to \(3^{?}\) Now we have: \[ 3^{0} = 3^{?} \] This implies: \[ ? = 0 \] ### Final Answer Thus, the value of the question mark is: \[ \boxed{0} \] ---
Promotional Banner

Topper's Solved these Questions

  • NUMBER SYSTEM, SIMPLIFICATION AND APPROXIMATION

    ADDA247|Exercise MAINS QUESTIONS |70 Videos
  • NUMBER SERIES

    ADDA247|Exercise PREVIOUS YEAR QUESTIONS|63 Videos
  • PERCENTAGE

    ADDA247|Exercise PREVIOUS YEAR QUESTION|26 Videos