Consider the reacting at `300K` `C_(6)H_(6)(l)+(15)/(2)O_(2)(l)rarr 6CO_(2)(g)+3H_(2)O(l),DeltaH=-3271 kJ` What is `DeltaU` for the combustion of `1.5` mole of benzene at `27^(@)C` ?
A
`-3267.25 kJ`
B
`-4900.88 kJ`
C
`-4906.5 kJ`
D
`-3274.75 kJ`
Text Solution
Verified by Experts
The correct Answer is:
B
For combustion of 1 mole of benzene `" "Deltan_(g)=-1.5` `" "DeltaH=DeltaU+Deltan_(g)RT` `implies -3271 = DeltaU-(1.5 xx 8.314 xx 300)/(1000)` `implies" "DeltaU=-3267.25 " kJ"` For 1.5 mole of combustion of benzene `DeltaU=-3267.25 xx1.5` `=-4900.88 " kJ"`
Topper's Solved these Questions
THERMODYNAMICS
NARENDRA AWASTHI|Exercise Level 1 (Q.1 To Q.30)|6 Videos
THERMODYNAMICS
NARENDRA AWASTHI|Exercise Level 1 (Q.31 To Q.60)|2 Videos
2H_(2(g)) + O_(2(g)) rarr 2H_(2)O_((l)) , DeltaH= -ve and DeltaG= -ve . Then the reaction is
Benzene burns in oxygen according to the equation 2C_(6)H_(6(l))+15O_(2(g))rarr12CO_(2(g))+6H_(2)O_((l)) . How many litres of oxygen are required at STP for the complete combustion of 39g of liquid benzene?
Balance the following chemical equation. C_(2)H_(6)+O_(2)rarr CO_(2)+H_(2)O
CH_(4(g)) + 2O_(2(g)) rarr CO_(2(g)) + 2H_2O_((l)) DeltaH = -200 K.cal , now DeltaE Cal, now DeltaE for the same process at 300 K (in K.Cal)
DeltaS_("surr") " for " H_(2) + 1//2O_(2) rarr H_(2)O, DeltaH -280 kJ at 400K is
For the reaction 2H_(2)O_((l)) rarr H_(3)O_((aq))^(+) + OH_((aq))^(-) , the value of Delta H is
H_((aq))^(+) + OH_((aq))^(-) rarr H_(2)O_((l)) , Delta H = -ve and Delta G= -ve then the reaction is
NARENDRA AWASTHI-THERMODYNAMICS-Level 3 - Match The Column