Standard Gibb's energy of reaction `(Delta_(r )G^(@))` at a certain temperature can be computed `Delta_(r )G^(@)=Delta_(r)H^(@)-T.Delta_(r )S^(@)` and the change in the value of `Delta_(r)H^(@)` and `Delta_(r)S^(@)` for a reaction with temperature can be computed as follows : `Delta_(r )H_(T_(2))^(@)-Delta_(r )H_(T_(1))^(@)=Delta_(r )C_(p)^(@)(T_(2)-T_(1))` `Delta_(r )S_(T_(2))^(@)-Delta_(r )S_(T_(1))^(@)=Delta_(r )C_(p)^(@)ln.(T_(2)/T_(1))` `" "Delta_(r )G^(@)=Delta_(r)H^(@)-T.Delta_(r)S^(@)` and `" by "Delta_(r )G^(@)=-"RT " ln K_(eq)`. Consider the following reaction : `CO(g)+2H_(2)(g)iffCH_(3)OH(g)` Given : `Delta_(f)H^(@)(CH_(3)OH,g)=-201 " kJ"//"mol", " "Delta_(f)H^(@)(CO,g)=-114" kJ"//"mol"` `S^(@)(CH_(3)OH,g)=240" J"//"K-mol, "S^(@)(H_(2),g)=29" JK"^(-1)" mol"^(-1)` `S^(@)(CO,g)=198 " J"//"mol-K, "C_(p,m)^(@)(H_(2))=28.8 " J"//"mol-K"` `C_(p,m)^(@)(CO)=29.4 " J"//"mol-K, "C_(p,m)^(@)(CH_(3)OH)=44 " J"//"mol-K"` and `" "ln ((320)/(300))=0.06`, all data at 300 K `Delta_(r )H^(@)` at 320 K is :
Consider the following reaction : CO_((g)) + 2H_(2(g)) hArr CH_(3)OH_((g)) Given : Delta_(r) H^(@) (CH_(3)OOH, g) = -201 kJ/mol, Delta_(r) H^(@) (CO, g) = -114 kJ/mol S^(@) (CH_(3)OOH, g) = 240 J/K-mol , S^(@) (H_(2), g) = 29 JK^(-1)mol^(-1) S^(@) (CO, g) = 198 J/mol-K , C^(@)_(p,m) (H_(2)) = 28.8 J/mol-K C^(@)_(p,m) (CO) = 29.4 J/mol-K , C^(@)_(p,m) (CH_(3)OH) = 44 J/mol-K and ln ((320)/(300)) = 0.06 , all data at 300 K Delta_(r) S^(@) at 300 K for the reaction is :
Consider the following reaction : CO_((g)) + 2H_(2(g)) hArr CH_(3)OH_((g)) Given : Delta_(r) H^(@) (CH_(3)OOH, g) = -201 kJ/mol, Delta_(r) H^(@) (CO, g) = -114 kJ/mol S^(@) (CH_(3)OOH, g) = 240 J/K-mol , S^(@) (H_(2), g) = 29 JK^(-1)mol^(-1) S^(@) (CO, g) = 198 J/mol-K , C^(@)_(p,m) (H_(2)) = 28.8 J/mol-K C^(@)_(p,m) (CO) = 29.4 J/mol-K , C^(@)_(p,m) (CH_(3)OH) = 44 J/mol-K and ln ((320)/(300)) = 0.06 , all data at 300 K Delta_(r) H^(@) at 300 K for the reaction is :
Consider the following reaction : CO_((g)) + 2H_(2(g)) hArr CH_(3)OH_((g)) Given : Delta_(r) H^(@) (CH_(3)OH, g) = -201 kJ/mol, Delta_(r) H^(@) (CO, g) = -114 kJ/mol S^(@) (CH_(3)OOH, g) = 240 J/K-mol , S^(@) (H_(2), g) = 29 JK^(-1)mol^(-1) S^(@) (CO, g) = 198 J/mol-K , C^(@)_(p,m) (H_(2)) = 28.8 J/mol-K C^(@)_(p,m) (CO) = 29.4 J/mol-K , C^(@)_(p,m) (CH_(3)OH) = 44 J/mol-K and ln ((320)/(300)) = 0.06 , all data at 300 K Delta_(r) S^(@) at 320 K is :
Define and explain the standard enthalpy of formation (Delta_(r)H^(theta)) .
If Delta G = Delta H - T Delta S and Delta G = Delta H + T [(d(Delta G))/(dT)]_(P) then variation of emf of a cell E, with temperature T is given by:
Show that rr_(1)r_(2)r_(3)=Delta^(2)
(A) The thermodynamical reaction proceeds forward if Delta G is negative in the equation Delta G = Delta H - T Delta S (R) If Delta S and Delta H are positive and with increasing temperature, T Delta S increases
If r_(1)^(2)=r_1r_(2)+r_(2)r_(3)+r_(3)r_(1) then the triangle is
For the reaction at 300 K A_((g)) harr V_((g)) + S_((g) . Delta_(t) H^(@) = - 30 "KJ/mol" Delta_(t)S^(@) = - 0.1 K.J. K^(-1)."mole"^(-1) What Is the value of equilibrium constant ?
For the hypothetical reaction A_(2(g)) + B_(2(g)) hArr 2AB_((g)) Delta_(r ) G^(@) and Delta_(r)S^(@) are 20 kJ/mol and -20 JK^(-1) mol^(-1) respectively at 200K. If Delta_(r)C_(P) is 20 JK^(-1) mol^(-1) then Delta_(r ) H^(@) at 400K is
NARENDRA AWASTHI-THERMODYNAMICS-Level 3 - Match The Column