Home
Class 14
MATHS
If 1 (2)/(3) div (2)/(7) xx (x)/(7) = 1 ...

If `1 (2)/(3) div (2)/(7) xx (x)/(7) = 1 (1)/(4) xx (2)/(3) div (1)/(6)`, then find the value of x.

A

0.006

B

`(1)/(6)`

C

0.6

D

6

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 1 \frac{2}{3} \div \frac{2}{7} \times \frac{x}{7} = 1 \frac{1}{4} \times \frac{2}{3} \div \frac{1}{6} \), we will follow these steps: ### Step 1: Convert Mixed Numbers to Improper Fractions Convert \( 1 \frac{2}{3} \) and \( 1 \frac{1}{4} \) into improper fractions. - For \( 1 \frac{2}{3} \): \[ 1 \frac{2}{3} = \frac{3 \times 1 + 2}{3} = \frac{5}{3} \] - For \( 1 \frac{1}{4} \): \[ 1 \frac{1}{4} = \frac{4 \times 1 + 1}{4} = \frac{5}{4} \] ### Step 2: Rewrite the Equation Now, substitute the improper fractions back into the equation: \[ \frac{5}{3} \div \frac{2}{7} \times \frac{x}{7} = \frac{5}{4} \times \frac{2}{3} \div \frac{1}{6} \] ### Step 3: Simplify the Left Side To simplify the left side, we can rewrite the division as multiplication by the reciprocal: \[ \frac{5}{3} \times \frac{7}{2} \times \frac{x}{7} \] The \( 7 \) in the numerator and denominator cancels out: \[ \frac{5}{3} \times \frac{x}{2} \] ### Step 4: Simplify the Right Side Now simplify the right side: \[ \frac{5}{4} \times \frac{2}{3} \div \frac{1}{6} = \frac{5}{4} \times \frac{2}{3} \times 6 \] This can be simplified as: \[ \frac{5 \times 2 \times 6}{4 \times 3} = \frac{60}{12} = 5 \] ### Step 5: Set Up the Equation Now we have: \[ \frac{5x}{6} = 5 \] ### Step 6: Solve for \( x \) To isolate \( x \), multiply both sides by \( 6 \): \[ 5x = 30 \] Now divide by \( 5 \): \[ x = 6 \] ### Final Answer Thus, the value of \( x \) is \( 6 \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If 1(2)/(3)+ ( 2)/( 7 ) xx ( x)/( 7) = 1( 1)/( 4) xx ( 2)/( 3) +( 1)/( 6) then find the value of x.

Find (4)/(7) xx (14)/(3) div (2)/(3)

[ 1 (1)/(4) div 1 (1)/(2) ] + [ 2 (1)/(3) xx 1 (3)/(4) ]=

The value of ((7)/(8) div 5(1)/(4) xx 7(1)/(5) - (3)/(20) " of " (2)/(3)) div (1)/(2) + ((3)/(5) xx 7(1)/(2) + (2)/(3) div (8)/(15)) is equal to 7+k , where k =

(5)/(6)div(6)/(7)xx?-(8)/(9)div1(3)/(5)+(3)/(4)xx3(1)/(3)=2(7)/(9)

The value of 5 (5)/(6) div 3(1)/(2) xx 2 (1)/(10) + (3)/(5) of 7(1)/(2) div (2)/(3) - (2)/(3) div (8)/(15) xx 1 (1)/(5)

The value of 3(1)/(3) div 2(1)/(2) of 1(3)/(5) + ((3)/(8) + (1)/(7) xx 1 (3)/(4)) is