Home
Class 14
MATHS
3 (5)/(6) + 6 (1)/(7) - 2 (1)/(3) - 1 (1...

`3 (5)/(6) + 6 (1)/(7) - 2 (1)/(3) - 1 (1)/(2)` is equal to

A

`6 (1)/(7)`

B

`6 (1)/(21)`

C

`6 (5)/(28)`

D

`6 (1)/(14)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(3 \frac{5}{6} + 6 \frac{1}{7} - 2 \frac{1}{3} - 1 \frac{1}{2}\), we will follow these steps: ### Step 1: Convert Mixed Numbers to Improper Fractions First, we convert each mixed number into an improper fraction. 1. \(3 \frac{5}{6} = \frac{(3 \times 6) + 5}{6} = \frac{18 + 5}{6} = \frac{23}{6}\) 2. \(6 \frac{1}{7} = \frac{(6 \times 7) + 1}{7} = \frac{42 + 1}{7} = \frac{43}{7}\) 3. \(2 \frac{1}{3} = \frac{(2 \times 3) + 1}{3} = \frac{6 + 1}{3} = \frac{7}{3}\) 4. \(1 \frac{1}{2} = \frac{(1 \times 2) + 1}{2} = \frac{2 + 1}{2} = \frac{3}{2}\) Now, we rewrite the expression: \[ \frac{23}{6} + \frac{43}{7} - \frac{7}{3} - \frac{3}{2} \] ### Step 2: Find a Common Denominator The denominators are 6, 7, 3, and 2. The least common multiple (LCM) of these numbers is 42. ### Step 3: Convert Each Fraction to Have the Common Denominator Now we convert each fraction: 1. \(\frac{23}{6} = \frac{23 \times 7}{6 \times 7} = \frac{161}{42}\) 2. \(\frac{43}{7} = \frac{43 \times 6}{7 \times 6} = \frac{258}{42}\) 3. \(\frac{7}{3} = \frac{7 \times 14}{3 \times 14} = \frac{98}{42}\) 4. \(\frac{3}{2} = \frac{3 \times 21}{2 \times 21} = \frac{63}{42}\) Now, we can rewrite the expression: \[ \frac{161}{42} + \frac{258}{42} - \frac{98}{42} - \frac{63}{42} \] ### Step 4: Combine the Fractions Now that all fractions have the same denominator, we can combine them: \[ \frac{161 + 258 - 98 - 63}{42} = \frac{258}{42} \] ### Step 5: Simplify the Result Now we simplify \(\frac{258}{42}\): 1. Find the GCD of 258 and 42, which is 6. 2. Divide both the numerator and the denominator by 6: \[ \frac{258 \div 6}{42 \div 6} = \frac{43}{7} \] ### Step 6: Convert Back to a Mixed Number Finally, we convert \(\frac{43}{7}\) back to a mixed number: \[ 43 \div 7 = 6 \quad \text{(remainder 1)} \] So, \(\frac{43}{7} = 6 \frac{1}{7}\). ### Final Answer The final answer is: \[ 6 \frac{1}{7} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

2(1)/(7) + 3(6)/(7) + 5(1)/(6) = ?

(5)/(6) -: (6)/(7) xx ? - (8)/(9) -: 1 (2)/(5) -: (3)/(4) xx 3 (1)/(3) = 2(7)/(9)

5(1)/(4)+6(2)/(3)+7(1)/(6)=?

(1)/(2*3)+(1)/(4*5)+(1)/(6*7)+(1)/(8*9)+......... is equal to

The value of 6((1)/(5)) - [4((1)/(2)) - {""((1)/(6)) - (""((3)/(5)) + ""((3)/(10)) - ""((7)/(15)))}] is

(7)/(8)-:(7(1)/(2)-5(1)/(6)-:2(3)/(4))+4(1)/(2)

If x = (1)/(1.2) + (1)/(3.4) + (1)/(5.6) …….oo, and y = 1 - (1)/(2.3) - (1)/(4.5) - (1)/(6.7)…….oo , then

The sum of the series (5)/(1.2.3)+(7)/(3.4.5)+(9)/(5.6.7)+.... is equal to