Home
Class 11
MATHS
If bar(a)= (1, -1, -6), bar(b)= (1, -3, ...

If `bar(a)= (1, -1, -6), bar(b)= (1, -3, 4), bar(c )= (2, -5, 3)`, then compute `bar(a) xx (bar(b) xx bar(c ))`.

Promotional Banner

Topper's Solved these Questions

  • FINAL TOUCH (A SPECIAL PACKAGE OF THE MOST IMPORTANT QUESTIONS TO SUCCEED IN EXAMINATION EASILY)

    VGS PUBLICATION-BRILLIANT|Exercise Product of Vectors (Long Answer Type Questions)|9 Videos
  • FINAL TOUCH (A SPECIAL PACKAGE OF THE MOST IMPORTANT QUESTIONS TO SUCCEED IN EXAMINATION EASILY)

    VGS PUBLICATION-BRILLIANT|Exercise Trigonometric Ratios Upto Transformations (Very Short Answer Type Questions)|20 Videos
  • FINAL TOUCH (A SPECIAL PACKAGE OF THE MOST IMPORTANT QUESTIONS TO SUCCEED IN EXAMINATION EASILY)

    VGS PUBLICATION-BRILLIANT|Exercise Product of Vectors (Very Short Answer Type Questions)|10 Videos
  • MATHEMATICS -I(A) MODEL PAPER 4

    VGS PUBLICATION-BRILLIANT|Exercise Section-C|7 Videos

Similar Questions

Explore conceptually related problems

If bar(a) = 2bar(i) + 3bar(j) + 4bar(k), bar(b) = bar(i) + bar(j) -bar(k), bar(c ) = bar(i) - bar(j) + bar(k) , compute bar(a)x(bar(b)xbar(c )) and verify that it is perpendicular to bar(a) .

If bar(a)=bar(i)-2bar(j)+bar(k), bar(b)=2bar(i)+bar(j)+bar(k), bar(c ) = bar(i) + 2bar(j)-bar(k) , then find bar(a) xx (bar(b) xx bar(c )) and |(bar(a)xxbar(b))xxbar(c )| .

If bar(a) = 2bar(i) +bar(j)-3bar(k), bar(b) = bar(i) -2bar(j)+bar(k), bar(C) =- bar(i) +bar(j)-4bar(k), bar(D) = bar(i) +bar(j)+bar(k) , then compute |(bar(a)xxbar(b))xx(bar(c)xxbar(d))| .

If bar(a)= 2bar(i) - 3bar(j) + 5bar(k), bar(b)= - bar(i) + 4bar(j)+ 2bar(k) then find (bar(a) + bar(b)) xx (bar(a) - bar(b)) and unit vector perpendicular to both bar(a) + bar(b) " & " bar(a)- bar(b) .

If |bar(a)|=2, |bar(b)|=3, (bar(a), bar(b))= pi//6 , then find (bar(a) xx bar(b))^(2)

If bar(a) = 2bar(i) - bar(j) + bar(k), and bar(b) = bar(i) - 3bar(j) - 5bar(k) then find |bar(a) xx bar(b)| .

Let bar(a), bar(b), bar(c ) be unit vectors, suppose that bar(a). bar(b) = bar(a). bar(c )= 0 and the angle between bar(b) and bar(c ) is pi//6 then show that bar(a)= +-2 (bar(b) xx bar( c))

If bar(a) = bar(i) -2bar(j)-3bar(k),bar(b)=2bar(i)+bar(j)-bar(k),bar(c )=bar(i)+3bar(j)-2bar(k) , compute bar(a).(bar(b)xxbar(c)) .

If bar(a) = 2bar(i) - 3bar(j) + 5bar(k), bar(b) = -bar(i) + 4bar(j) + 2bar(k) then find bar(a) xx bar(b) and unit vector perpendicular to both bar(a), bar(b) [-26bar(i) - 9bar(j) + 5bar(k), +- 1/(sqrt(782))26bar(i)+9bar(j)-5bar(k)) .