Home
Class 11
MATHS
If a, b, c are non zero real numbers and...

If a, b, c are non zero real numbers and `alpha, beta` are the solutions of the equation a `cos theta+ b sin theta= c`, then show that
`sin alpha sin beta= (c^(2)- a^(2))/(a^(2) + b^(2))`

Promotional Banner

Topper's Solved these Questions

  • FINAL TOUCH (A SPECIAL PACKAGE OF THE MOST IMPORTANT QUESTIONS TO SUCCEED IN EXAMINATION EASILY)

    VGS PUBLICATION-BRILLIANT|Exercise Trigonometric Ratios Upto Transformations (Long Answer Type Questions)|10 Videos
  • FINAL TOUCH (A SPECIAL PACKAGE OF THE MOST IMPORTANT QUESTIONS TO SUCCEED IN EXAMINATION EASILY)

    VGS PUBLICATION-BRILLIANT|Exercise Trigonometric Equations (Very Short Answer Type Questions)|8 Videos
  • FINAL TOUCH (A SPECIAL PACKAGE OF THE MOST IMPORTANT QUESTIONS TO SUCCEED IN EXAMINATION EASILY)

    VGS PUBLICATION-BRILLIANT|Exercise Trigonometric Ratios Upto Transformations (Very Short Answer Type Questions)|20 Videos
  • MATHEMATICS -I(A) MODEL PAPER 4

    VGS PUBLICATION-BRILLIANT|Exercise Section-C|7 Videos

Similar Questions

Explore conceptually related problems

If alpha, beta are the solutions of a cos 2theta + b sin 2theta = c , then tan alpha tan beta=

If a cos theta + b sin theta = c " then " (a sin theta - b cos theta )^(2) =

If alpha, beta are solutions of a tan theta + b sec theta = c then tan (alpha + beta)=

If alpha, beta are different values of theta satisfying the equation 5 cos theta + 12 sin theta = 11 then the value of sin (alpha + beta)=

If alpha, beta are solutions of a cos x + b sin x = c then sin alpha + sin beta =

If alpha, beta are solutions of a cos x + b sin x = c then cos alpha + cos beta=

If alpha, beta are solutions of a cos theta + b sin theta = c where a, b, c in R and a^(2) + b^(2) gt 0, cos alpha ne cos beta, sin alpha ne sin beta then prove that sin alpha sin beta = (c^(2)-a^(2))/(a^(2) + b^(2))