Home
Class 11
MATHS
Show that : |{:( 1, a ^(2) , a ^(3)),( ...

Show that : `|{:( 1, a ^(2) , a ^(3)),( 1 , b ^(2) , b ^(3)),( 1, c ^(2) , c ^(3)):}| = ( a - b) (b -c) (c -a) (ab + bc + ca).`

Text Solution

Verified by Experts

The correct Answer is:
`(ab + bc + ca) = RHS.`
Promotional Banner

Topper's Solved these Questions

  • MODEL PAPER 6

    VGS PUBLICATION-BRILLIANT|Exercise SECTION - B|7 Videos
  • MODEL PAPER 5

    VGS PUBLICATION-BRILLIANT|Exercise SECTION - C (Long answer type questions)|6 Videos
  • MODEL PAPER 7

    VGS PUBLICATION-BRILLIANT|Exercise SECTION -C|8 Videos

Similar Questions

Explore conceptually related problems

Show that |{:(a,b,c),(a^(2),b^(2),c^(2)),(a^(2),b^(3),c^(3)):}|=abc(a-b)(b-c)(c-a)

Without expanding the determinant, prove that {:[( a, a ^(2), bc ),( b ,b ^(2) , ca),( c, c ^(2) , ab ) ]:} ={:[( 1, a^(2) , a^(3) ),( 1,b^(2) , b^(3) ),( 1, c^(2),c^(3)) ]:}

If a,b,c are different and |(a,a^(2),a^(3)-1),(b,b^(2),b^(3)-1),(c,c^(2),c^(3)-1)|=0 then

Show that |{:(1,a,a^2),(1 ,b,b^2),(1,c,c^2):}| =(a-b)(b-c)(c-a)

|(1,a,a^(2)+bc),(1,b,b^(2)+ac),(1,c,c^(2)+ab)|=k(a-b),(b-c), (c-a) then k =

Show that |{:(1,a,a^2),(1,b,b^2),(1,c,c^2):}|=(a-b)(b-c)(c-a)

Show that |{:(1,a,a^2),(1,b,b^2),(1,c,c^2):}|=(a-b)(b-c)(c-a)

|(1,1,1),(a^(2),b^(2),c^(2)),(a^(3),b^(3),c^(3))|=