Home
Class 11
MATHS
Show that the product of perpendicular f...

Show that the product of perpendicular from `(alpha, beta)` to the pair of lines `ax^2 + 2hxy + by^2= 0 ` is `|(aalpha^2 + 2h alpha beta + b beta^2)/(sqrt((a-b)^2 - (2h)^2))|`

Promotional Banner

Topper's Solved these Questions

  • MATHEMATICS -I(B) MODEL PAPER -9

    VGS PUBLICATION-BRILLIANT|Exercise SECTION-B|8 Videos
  • MATHEMATICS -I(A) MODEL PAPER 5

    VGS PUBLICATION-BRILLIANT|Exercise Section-C|7 Videos
  • MATHEMATICS -II(B) MODEL PAPER -10

    VGS PUBLICATION-BRILLIANT|Exercise SECTION-C|9 Videos

Similar Questions

Explore conceptually related problems

Show that the product of the perpendicular from (alpha,beta) to the pair of lines S-= ax^(2)+2hxy+by^(2)+2gx+2fy+c=0 is (|aalpha^(2)+2halphabeta+2galpha+2fbeta+c|)/(sqrt((a-b)^(2)+4h^(2))) Hence or otherwise find the product of the perpendicular from the origin

(alpha + beta)^(2) - 2 alpha beta =

If alpha , beta are the roots of ax^2 + bx + c=0 then alpha beta ^(2) + alpha ^2 beta + alpha beta =

IF alpha , beta are the roots of ax ^2 + bx + c=0 then (alpha ^2 + beta ^2)/(alpha ^(-2)+ beta ^(-2))=

If alpha , beta are the roots of ax ^2-2bx + c=0 then alpha ^3 beta ^3 + alpha ^2 beta ^3 + alpha ^3 beta ^2 =

If alpha , beta are the roots of ax ^2 + bx +c=0 then alpha ^5 beta ^8 + alpha beta ^5=