Home
Class 11
MATHS
If y=ae^(nx)+be^(-nx), then prove that y...

If `y=ae^(nx)+be^(-nx)`, then prove that `y''=n^(2)y`.

Text Solution

Verified by Experts

The correct Answer is:
`n^2y`
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICS -II(B) MODEL PAPER -10

    VGS PUBLICATION-BRILLIANT|Exercise SECTION-B|9 Videos
  • MATHEMATICS -II(B) MODEL PAPER -10

    VGS PUBLICATION-BRILLIANT|Exercise SECTION-C|9 Videos
  • MATHEMATICS -I(B) MODEL PAPER -9

    VGS PUBLICATION-BRILLIANT|Exercise SECTION-C|7 Videos
  • MODEL PAPER - 7

    VGS PUBLICATION-BRILLIANT|Exercise Section - C (Long Answer Type Questions)|7 Videos

Similar Questions

Explore conceptually related problems

y = ae^(3x) + be^(-2x)

If y = ae ^(nx) + be ^(-nx) then y _(2)=

If y=acos(sinx)+bsin(sinx) then prove that y''+(tanx)y'+ycos^(2)x=0 .

If y=ax^(n+1)+bx^(-n) then show that x^(2)y''=n(n+1)y .

If y= Ae^(mx) +Be^(nx) , show that (d^(2)y)/(dx^(2))-(m+n)(dy)/(dx)+mny=0 .

If y= A sin x+ B cos x , then prove that (d^(2)y)/(dx^(2))+y=0 .

If y= ae^(nx)+be^(-nx),then (d^2y)/(dx^2)-n^2y is equal to

If xy = ae ^(x) + be^(-x) then xy _(2) + 2y _(1) - xy =