Home
Class 12
MATHS
If "sin"^(1)+x "sin"^(-1) y=(2pi)/(3) th...

If `"sin"^(1)+x "sin"^(-1) y=(2pi)/(3)` then `cos^(-1)x+cos^(-1)y` is equal to

A

`(2pi)/(3)`

B

`(pi)/(3)`

C

`(pi)/(6)`

D

`pi`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

int(cos^(-1)x+sin^(-1)x)dx is equal to

If sin^(-1)x-cos^(-1)x=(pi)/(6),"then"

If sin^(-1)x+sin^(-1)y=pi/2,t h e n(1+x^4+y^4)/(x^2-x^2y^2+y^2) is equal to

tan^-1[(cos x)/(1+sin x)] is equal to

If 4cos^(-1)x+sin^(-1)x=pi, then x is

The value of "tan"(sin^(-1)("cos"(sin^(-1)x)))"tan"(cos^(-1)(sin(cos^(-1)x))),w h e r ex in (0,1), is equal to

Find the value of sin^(-1)x+sin^(-1)1/x+cos^(-1)x+cos^(-1)1/xdot

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi,t h e n x^2+y^2+z^2+2x y z=1 2(sin^(-1)x+sin^(-1)y+sin^(-1)z)=cos^(-1)x+cos^(-1)y+cos^(-1)z x y+y z+z x=x+y+z-1 (x+1/x)+(y+1/y)+(z+1/z)geq6