Home
Class 11
PHYSICS
The magnitude of vectors vec(OA), vec(OB...

The magnitude of vectors `vec(OA), vec(OB) and vec (OC)` in figure are equal. Find the direction of `vec(OA)+vec(OB)-vec(OC)`.
.

Text Solution

Verified by Experts

Let `OA=OB=OC=F`.
x - component of `vec(OA)=F cos 30^0= F sqrt(3)/2`
x-component of `vec(OB)=F cos60^0 = F/2`
`x-component of `vec(OC)=F cos 135^0= - F/sqrt2`
`x-component of `vec(OA)+vec(OB)-vec(OC)`
`-((Fsqrt(3))/2)+(F/2)+(-F/sqrt(2))`
`= F/2 (sqrt3+1+sqrt2)`.
y-component of `vec(OA)=F cos 60^0=F/2`
y- component of `vec(OB)=F cos 150^0 = (Fsqrt(3)/2`
y- component of `vec(OC)=F cos 45^0=F/sqrt2`.
y-component of `vec(OA)+vec(OB)+vec(OC)`
`=(F/2)(sqrt3+1+sqrt2)`
y-component of `vec(OA)=F cos 60^0= F/2`
y-component of `vec(OC)=F cos 45^0=F/sqrt2`
y-component of `vec(OA)+vec(OB)+vec(OC)`
`=(F/2)+(-(Fsqrt3)/2-(F/sqrt2)`
=F/2 (1-sqrt3-sqrt2)`
Angle of `vec(OA)+vec(OB)-vec(OC)` with the X - axis
`=tan^-1 (F/2 (1-sqrt3-sqrt2))/(F/2 (1+sqrt3+sqrt2))= tan^-1 (1-sqrt3-sqrt2)/(1+sqrt3+sqrt2)`
Promotional Banner

Similar Questions

Explore conceptually related problems

For given vectors, vec(a)=hati+2hatj and vec(b)=hati+2hatk , find the unit vector in the direction of the vector 3vec(a)-2vec(b) .

If vec(a),vec(b),vec( c ) are mutually perpendicular vectors of equal magnitudes, show that the vector vec(a)+vec(b)+vec( c ) is equally inclined to vec(a),vec(b) and vec( c ) .

If the magnitude of the vector product | vec(A) xx vec(B)| of two vector is equal to the magnitude of their scalar product | vec(A) . vec(B)| , then the angle between vec(A) and vec(B) is ……….

Three vectors vec(a),vec(b) and vec( c ) satisfy the condition vec(a)+vec(b)+vec( c )=vec(0) . Evaluate the quantity mu=vec(a).vec(b)+vec(b).vec( c )+vec( c ).vec(a) , if |vec(a)|=1,|vec(b)|=4 and |vec( c )|=2 .

Three vector vec(A) , vec(B) , vec(C ) satisfy the relation vec(A)*vec(B)=0 and vec(A).vec(C )=0 . The vector vec(A) is parallel to

For given vectors vec(a)=3hati+4hatj-5hatk and vec(b)=2hati+hatj find the unit vectors in the direction of the vector vec(a)+2vec(b) .

vec(a) and vec(b) are any two vectors. Prove that |vec(a)+vec(b)|le|vec(a)|+|vec(b)|

The unit vectors vec(a),vec(b) and vec( c ) are not coplanar. If vec(a)xx(vec(b)xx vec( c ))=(1)/(sqrt(2))(b+c) then the angle between vec(a) and vec(b) is ………………

Let O, O' and G be the circumcentre, orthocentre and centroid of a Delta ABC and S be any point in the plane of the triangle. Statement -1: vec(O'A) + vec(O'B) + vec(O'C)=2vec(O'O) Statement -2: vec(SA) + vec(SB) + vec(SC) = 3 vec(SG)