Home
Class 11
PHYSICS
Let veca=4veci+3vecj and vecb=3veci+4vec...

Let `veca=4veci+3vecj` and `vecb=3veci+4vecj`. a.Find the magnitudes of
a.`veca`,
b. `vecb`,
c.` veca+vecb `
d. `veca-vecb.`

Text Solution

Verified by Experts

The correct Answer is:
(a) 5 (b) 5 (c) `7sqrt(2)` (d)2

`veca=4veci+vecj, vecb=3veci+4vecj`
(a). `|vecalpha|=sqrt(9+16)=5`
(b).`|vecb|=|3veci+4vech|=sqrt(9+16)=5`
(c).`|veca-vecb|=|7veci+7vecj|=sqrt(49+49)`
`sqrt(98)=7sqrt(2)`
(d). `veca-vecb=(4veci+3vecj)-(3veci+4vecj)`=`veci-vecj, rarr |veca-vecb|=sqrt((1)^2+(-1)^2)=2`
Promotional Banner

Similar Questions

Explore conceptually related problems

What is the value of (vecA + vecB) * ( vecA xx vecB) ?

vecA, vecB and vecC are vectors each having a unit magneitude. If vecA + vecB+vecC=0 , then vecA. vecB+vecB.vecC+ vecC.vecA will be:

For three vectors veca, vecb, vecc satisfies veca+ vecb + vecc = vec0 and |veca| = 3 , |vecb| = 4, |vecc| =2 then veca. vecb + vecb. vecc + vecc.veca = _____________.

If veca,vecb,vecc are unit vectors such that veca+vecb+vecc=vec0 , find the value of veca*vecb+vecb*vecc+vecc*veca .

If vecA xx vecB= vec0 and vecB xx vecC=vec0 , then the angle between vecA and vecC may be :

For two non - zero vectors veca and vecb | veca + vecb| = | veca| then vectors 2 veca + vecb and vecb are …..

The magnitude of the vector product of two vectors vecA and vecB may not be:

Three vectors veca,vecbandvecc satisfy the condition veca+vecb+vecc=vec0 . Evaluate the quantity mu=veca*vecb+vecb*vecc+vecc*veca , if |veca|=3,|vecb|=4and|vecc|=2 .

Three vectors vecA,vecB and vecC are such that vecA=vecB+vecC and their magnitudes are in ratio 5:4:3 respectively. Find angle between vector vecA and vecC