Home
Class 11
PHYSICS
IF veca=2veci+3vecj+4veck and vecb =3vec...

IF `veca=2veci+3vecj+4veck and vecb =3veci+4vecj+5veck` find the angle between `veca and vecb`.

Text Solution

Verified by Experts

The correct Answer is:
`cos^-1((38)/sqrt(1450))`

Here `veca=2veci+3veci+4veck`
and`vecb=3veci+4vecj+5veck`
`veca.vecb=abcostheta`
`theta= cos^-1((veca.vecb)/(ab))`
=`cos^-1 (2xx3+3xx4+4xx5)/(sqrt(2^2+3^2+4^2)sqrt(3^2+4^2+^2))
=cos^-1 ((38)/(sqrt(29)sqrt(50)))
= cos^-1 ((38)/sqrt(1450))`
Promotional Banner

Similar Questions

Explore conceptually related problems

If vecA xx vecB= vec0 and vecB xx vecC=vec0 , then the angle between vecA and vecC may be :

If vector (veca+ 2vecb) is perpendicular to vector (5veca-4vecb) , then find the angle between veca and vecb .

If veca+vecb+vecc=vec0, |veca| = 3, |vecb| = 5, |vecc| = 7 , then angle between veca and vecb is

if| vecAxxvecB|=|vecA.vecB| , then angle between vecA and vecB will be

If vecA.vecB=vec0 and vecAxxvecC=vec0 , then the angle between vecB and vecC is

If veca and vecb are two unit vectors such that veca+2vecb and 5veca-4vecb are perpendicular to each other, then the angle between veca and vecb is

If vecA+ vecB = vecC and A+B=C , then the angle between vecA and vecB is :

If |hata+hatb|=|hata-hatb| , then find the angle between veca and vecb

If vecA*vecB=AB , then angle between vecA and vecB will be …... .

If vecA+ vecB = vecC and A+B+C=0 , then the angle between vecA and vecB is :