Home
Class 11
PHYSICS
1-sin^2 45° = a) 1/2 b) 1 c) 0 d) ...

`1-sin^2 45°` = ___________
a) 1/2
b) 1
c) 0
d) √3 /2

Text Solution

Verified by Experts

Mass of block M =200g=0.20kg
Block of the particle m=120gm
=0.12kg

In the equilibrium condition, the spring is stretched by a distance
`x=1.00cm`
`=0.01m`
`rarr 0.2xxg=Kxx x`
`rarr 2=Kxx0.01`
`rarr k=200N/m`
The velocity with which the particle m will strike M is given by
`u=sqrt(2xx10xx0.45)`
`=sqrt9=3m/sec`
So, after the collision, the velocity of the particle and the block is
`V=(0.12xx3)/0.32=9/8 m/sec`
Let the spring be stretched through can extra deflection of `delta`.
`0-(1/2)xx0.32xx(81/64)`
`=0.32xx10xxdelta-(1/2)xx200xx(delta+0.1)^2-(1/2)xx200xx(0.01)^2`
Solving the above equation we can get
`delta=0.045=4.5cm
Promotional Banner

Similar Questions

Explore conceptually related problems

( 2tan 30 ^(@) )/( 1+tan ^(2) 45^(@) ) = (a) sin 60 (b) cos 60 (c) tan 30 (d) sin 30

The values of cos^2 73^0+cos^2 47^0-sin^2 43^0+sin^2 107^0 is equal to: (a) 1 (b) 1/2 (c) (sqrt(3))/2 (d) sin^2 73^@+cos^4 73^@

The value of cos^(-1)(-1)-sin^(-1)(1) is: a. pi b. pi/2 c. (3pi)/2 d. -(3pi)/2

If x=a t^2,\ \ y=2\ a t , then (d^2y)/(dx^2)= (a) -1/(t^2) (b) 1/(2\ a t^3) (c) -1/(t^3) (d) -1/(2\ a t^3)

Statement 1 is True: Statement 2 is True; Statement 2 is a correct explanation for statement 1 Statement 1 is true, Statement 2 is true;2 Statement 2 not a correct explanation for statement 1. Statement 1 is true, statement 2 is false Statement 1 is false, statement 2 is true Statement I: consider D= |a_1a_2a_3 b_1b_2b_3 c_1c_2c_3| let B_1, B_2,\ B_3 be the co-factors \ b_1, b_2, a n d\ b_3 respectively then a_1B_1+a_2B_2+a_3B_3=0 because Statement II: If any two rows (or columns) in a determinant are identical then value of determinant is zero a. A b. \ B c. \ C d. D

If x=cos^(-1)(cos 4) " and " y=sin^(-1)(sin3) , then which of the following holds? (a) x-y=1 (b) x+y+1=0 (c) x+2y=2 (d) x+y=3pi-7

sin^(2)(cos^(-1)x)+cos^(2)(sin^(-1)(sqrt(1-x^(2)))) = ________ (0ltxlt1)

Match the following list of animals with their level of organisation. (A) (a - 2), (b - 3), (C-4), (d - 1) (B) (a - 2), (b - 4), (C-3), (d - 1) (C) (a - 4), (b - 1), (C-2), (d - 3) (D) (a - 1), (b - 4), (C-3), (d - 2)

If a x1 2+b y1 2+c z1 2=a x1 2+b y2 2+c z2 2=a x3 2+b y3 2+c z3 2=d\ a n d\ a x_2x_3+b y_2y_3+c z_2z_3=a x_3x_1+b y_3y_1+c z_3z_1=a x_1x_2+b y_1y_2+c z_1z_2=f then prove that |x_1y_1z_1x_2y_2z_1x_3y_3z_3|=(d-f)[(d+2f)/(a b c)]^(//2)(a , b ,\ c!=0)

The number of solutions of (log)_4(x-1)=(log)_2(x-3) is (2001, 2M) (a) 3 (b)1 (c) 2 (d) 0