Home
Class 11
PHYSICS
cos 405^@ equal to...

`cos 405^@` equal to ______

Text Solution

Verified by Experts

The correct Answer is:
A, B, C

The block m will slide down the inclined pklane of mass M with aceleration `a_1=g sin alpha` (relative) to the inclined plane.
The horizontal component of `a_1` will be `a_x=g sin alpha cos alpha, for which the blcok M will accelerate towards left, let teh acceleration be `a_2.`
According to the concept of centre of mass, (in the horizontl direcrtion exterN/Al force is zero)
`ma_x=(M+m)a_2`
`rarr a_2=(ma_x)/(M+m)`
`=(mgsiN/Alpha cosalpha)/(M+m)`......i ltbr.gt so the absolute (resulstant) acceleration of m on the block M along the direction of the incline will be
`a=gsiN/Alpha-a_2cosalpha`
`=gsiN/Alpha- (mgsiN/Alphacos^2alpha)/(M+m)`
`=gsiN/Alpha[1-(mcos^2alpha)/(M+m)]`
`=g sin alpha[(M+m-mcos^2alpha)/(M+m)]`
So, `a=g siN/Alpha [(M+msin^2alpha)/(M+m)]`...ii
Let the time taken by the block m to reach the bottom end be t
`Now, S=ut+(1/2)at^2`
`rarrh/(siN/Alpha)=(1/2)at^2`
`rarr t=(sqrt(2h)/(a siN/Alpha))`
So, the velocity of the bigger block after time t will be
`v_m=u=a_2t`
`=(mgsiN/Alphacosalpha)/(M+m)`
(sqrt(2h)/(alphasiN/Alpha))`
`=[(2m^2g^2hsin^2alphacos^2alpha)/((M+m)^2a siN/Alpha)]^(1/2)`
now substituting the value of a from equtioin ii we get
` V_m=[(2m^2g^2hsin^2alpha)/((M+m)^2siN/Alpha)xx(cos^2alpha)/(gsiN/Alpha)((M+m))/((M+msin^2alpha))]`
or ` V_m=[(2m^2ghcos^2alpha)/((M+m)(M+msin^2alpha)]^(1/2)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If cos("sin"^(-1)2/5+"cos"^(-1)x)=0 , then x is equal to _____

cos 1^(@) + cos2^(@) + cos 3^(@) + ….+cos 180^(@) is equal to

If cos^(-1)alpha+cos^(-1)beta+cos^(-1)gamma=3pi , then alpha(beta+gamma)+beta(gamma+alpha)+gamma(alpha+beta) equals to ______

IS (cos A)/( sin A) equal to cot A ?

Is (sin A )/( cos A) equal to tan A ?

cos^(2) alpha +cos^(2) beta +cos^(2) gamma is equal to

Find the value of : (i) sin 30^(@)+cos 60^(@) (ii) sin 0^(@)-cos 0^(@) (iii) tan 45^(@)- tan 37^(@) (iv) sin 390^(@) (v) cos 405^(@) (vi) tan 420^(@) (vii) sin 150^(@) (viii) cos 120^(@) (ix) tan 135^(@) (x) sin (330^(@)) (xi) cos 300^(@) (xii) sin (-30^(@)) (xiii) cos (-60^(@)) (xiv) tan (-45^(@)) (xv) sin (-150^(@))

Select the proper option so that statement becomes true. cos^(-1)("cos"(7pi)/6) is equal to

The sides of a triangle are in AP. If the angles A and C are the greatest and smallest angle respectively, then 4 (1- cos A) (1-cos C) is equal to