Home
Class 11
PHYSICS
Find ∫6x(x^2+6)dx. a)( 3x^4)/2+18x^2+C ...

Find` ∫6x(x^2+6)dx`.
`a)( 3x^4)/2+18x^2+C`
`b) ( 3x^4)/2−18x+C`
`c) ( 3x^4)/2−18x^2+C`
`d)( 3x^4)/2+x^2+C`

Text Solution

Verified by Experts



The force acting on the ladder are shown in ure. They are
a. its weight W
b. normal force `N_1` by the vertical wall
c. normal force `N_2` by the floor and
d. frictioN/Al force f by the floor.
Taking horizontal and vertical components
`N_1=f`.............i
`N_2=W`...........ii
Taking torque about B
`N_1(AO)=W(CB)`
`or, N_1(AB)cos53^0=W(AB)/2sin53^0`

or, `N_13/5=W/2 4/5`
`or N_=2/3W`.....iii
The normal force by the floor is
`N_2=W(10kg)(9.8m/s^2)=98N`.
The frictioN/Al force is
`f=N_1=2/3W=65N`
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the domain? f(x)=sqrt((x^2+4x)C_(2x^2+3))

int ( x^(2))/( ( x^(3) - 1) ( x^(3) + 4)) dx = . . . . + c

Find (dy)/(dx) for the following : (i) y=x^(7//2) (ii) y=x^(-3) (iii) y=x (iv) y=x^(5)+x^(3)+4x^(1//2)+7 (v) y=5x^(4)+6x^(3//2)+9x (vi) y=ax^(2)+bx+C (Vii) y=3x^(5)-3x-1/x

" If " f(x) = |{:(3,,3x,,3x^(2)+2a^(2)),(3x,,3x^(2)+2a^(2),,3x^(3)+6a^(2)x),(3x^(2)+2a^(2),,3x^(3)++6a^(2)x,,3x^(4)+12a^(2)x^(2)+2a^(4)):}| then

Find (dy)/(dx), when (i) y=sqrt(x) (ii) y=x^(5)+x^(4)+7 (iii) y=x^(2)+4x^(-1//2)-3x^(-2)

Check whether the following are quadratic equations : (1) (x-1)^(2)=2(x-3) (2) x^(2)-2x=(-2)(3-x) (3) (x-2)(x+1)=(x-1)(x+3) (4) (x-3)(2x+1)=x(x+5) (5) (2x-1)(x-3)=(x+5)(x-1) (6) x^(2)+3x+1=(x-2)^(2) (7) (x+2)^(3)=2x(x^(2)-1) (8) x^(3)-4x^(2)-x+1=(x-2)^(3)

If |{:(a,a+x^(2),a+x^(2)+x^(4)),(2a,3a+2x^(2),4a+3x^(3)+2x^(4)),(3a,6a+3x^(2),10a+6x^(2)+3x^(4)):}| = a_(0)+a_(1)x+a_(2)x^(2)+a_(3)x^(3)+a_(4)x^(4)+a_(5)x^(5)+a_(6)x^(6)+a_(7)x^(7) and f(x) =+ a_(0)x^(2)+a_(3)x+a_(6) then

cos 6x = 32 cos ^(6) x - 48 cos ^(4) x + 18 cos ^(2) x-1

If x, y in R and |{:((a ^(x) + a ^(-x) ) ^(2) , (a ^(x) - a ^(-x) ) ^(2), 1),((b ^(x) + b ^(-x)) ^(2),(b ^(x) - b ^(-x) ) ^(2) , 1), ( ( c ^(x) + c ^(-x)) ^(2) , (c ^(x) - c ^(-x)) ^(2) , 1):}|=2 y + 6 then y = ____________.