Home
Class 11
PHYSICS
Find the degree of the D.E ((d^2y)/(dx^2...

Find the degree of the D.E `((d^2y)/(dx^2))-3 tan⁡x=0`.
a) 2
b) 1
c) 3
d) 4

Text Solution

Verified by Experts

The correct Answer is:
C

`m=2kg, I_1=0=0.10 kg-m^2`
r_1=5 cm=0.05m`
`I_2=2.20 kg-m^2`
`r_2=10xm=0.1m`
Therefore
`mg-T_1=ma`…..1
`(T_1-T_2)r_1=I_1alpha`………..2
`T_2r_2=I_2alpha`…….3
substituting the value of `T_2` in the equation 2 we get
`rarr (T_1-I_2alpha/r_1)r_2=I_1alpha`
`(T_1-I_2a/r_1^2)=I_1a/r_2^2`
`rarr T_1={(I_1/r_1^2)+(I_2/r_2^2)}a`
LSubstituting the value of `T_1` in the equation 1 we get
`rarr mg-{(I_1/r_1^2)+(I_2/r_2^2)}a=ma`
`rarr (mg)/({(I_1/r_1^2)+(I_2/r_2^2)}+m+=a`
`rarr a=(2xx9.8)/(0.1/0.0025+0.2/0.01+2)`
`=0.316m/s^2`
`rarr T_2=I_2 a/r_2^2` ltbr.gt `=(0.20xx0.316)/0.01=6.32N`
Promotional Banner

Similar Questions

Explore conceptually related problems

The degree of the differential equation (d^(2)y)/(dx^(2))^(3) + ((dy)/(dx))^(2) + sin ((dy)/(dx)) + 1 = 0 is

If y= sin (sin x) then show that, (d^(2)y)/(dx^(2)) + (tan x) (dy)/(dx) + y cos^(2)x = 0

If x=a t^2,\ \ y=2\ a t , then (d^2y)/(dx^2)= (a) -1/(t^2) (b) 1/(2\ a t^3) (c) -1/(t^3) (d) -1/(2\ a t^3)

For each of the differential equations given below, indicate its order and degree(if defined). (i) (d^(2)y)/(dx^(2))+ 5x((dy)/(dx))^(2) - 6y = log x (ii) ((dy)/(dx))^(3) - 4((dy)/(dx))^(2) + 7y = sin x (iii) (d^(4)y)/(dx^(4)) - sin ((d^(3)y)/(dx^(3)) = 0

The degree of the differential equation (d^(2)y)/(dx^(2))+3((dy)/(dx))^(2)=x^(2)log((d^(2)y)/(dx^(2))), is

The order and degree of differential equation xy (d^2 y)/( dx^2) +((dy)/(dx))^2 -y ((dy)/(dx))^3 =0 is …….

The degree of the differential equation ((d^(2)y)/(dx^(2)))+((dy)/(dx))^(2)=xsin((d^(2)y)/(dx^(2))) is