Home
Class 11
PHYSICS
Find the scalar product of the vectors v...

Find the scalar product of the vectors `veca =2i+5j` and `vecb =6i−7j`.
a) -32
b) -23
c) 32
d) 23

Text Solution

Verified by Experts

The correct Answer is:
A, B

A hollow sphere is released from a top of an inclined plane a of incliN/Ation `theta`.
a. To prevent slidint the body will make only perfect rolling In this condition
`mglsintheta-f=ma` …………..1
`fxxR=(2/3)mR^2x(a/R)`
`rarr f=2/3ma`…………2
`rarr putting this value in the equation 1 we get
`- mg sintheta-2/3 ma=ma`

`rarr a=3/5a sin theta`
rarr mgsintheta-f=3/5mgsintheta`
`rarr f=2/5mgsintheta`
`rarr m mgcostheta-2/5 mg sintheta`
`rarrmu=2/5 tan theta`
`b. (1/5) tantheta(mgcostheta)R=2/3mR^2alpha`
`rarr alpha=3/10 ((gsintheta)/R)`
`ac=g sintheta-(g/5)sintheta`
`rarr =(4/5)gsintheta`
`rarr t^2=(2s)/(ac)`
`=2l(4g(sintheta)/5)(5/(2gsintheta))`
`:. Agasin, omega=alphat`
`K.E. =1/2mv^2+1/2Iomega^2`
`=1/2m(2as)+1/2lmv^2+1/2Iomega^`
`=1/2(2as)+1/2l(alpha^2t^2)`
`=1/2m(4g(sintheta)/5)x2xxl+1/2x2/3mR^2x9/100`
`((sin^2theta)/R)xx((5L)/(2gsintheta))`
`-4mgl(sintheta)/5+3mgl(sintheta)/40`
`=7/8mglsintheta`
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the scalar and vector products of two vectors. a = (3hati – 4hatj + 5hatk) and b = (– 2hati + hatj – 3hatk )

Find the vector product of vectors vecA = 4hati + 2 hatJ - hatk ,vecB = hati+ 3 hatJ + 4 hatk

Find the scalar and vector components of the vector with initial point (2,1) and terminal point (-5,7).

If vecA=2hati-2hatj-hatk and vecB=hati+hatj , then : (a) Find angle between vecA and vecB . (b) Find the projection of resultant vector of vecA and vecB on x-axis. (c) Find a vector which is, if added to vecA , gives a unit vector along y-axis.

If scalar product of vectors veca with vectors 3 hati - 5 hatk , 2 hati + 7 hatj and hati + hatj + hatk are respectively -1,6,5 then veca =………

Find the sum of the vectors veca=hati-2hatj+hatk,vecb=-2hati+4hatj+5hatkandvecc=hati-6hatj--7hatk .

The unit vactor parallel to the resultant of the vectors vec(A)=4hat(i)+3hat(j)+6hat(k) and vec(B)=-hat(i)+3hat(j)-8hat(k) is :-

Find the value of lambda such that the vectors bar(a)=2bar(i)+lambda bar(j)+bar(k) and bar(b)=bar(i)+2bar(j)+3bar(k) are orthogonal …….

A particle P starts from the point z_0=1+2i , where i=sqrt(-1) . It moves first horizontally away from origin by 5 units and then vertically away from origin by 3 units to reach a point z_1dot From z_1 the particle moves sqrt(2) units in the direction of the vector hat i+ hat j and then it moves through an angle pi/2 in anticlockwise direction on a circle with centre at origin, to reach a point z_2dot The point z_2 is given by 6+7i (b) -7+6i 7+6i (d) -6+7i