Home
Class 11
PHYSICS
The grvitationa potential in a region is...

The grvitationa potential in a region is given by 'V=20Nkg^-1(x+y)'. A. Show tht the equation is dimensionaslly correct b. Find lthe gravitational field at the point `(x,y)` Leave youranswer in terms of the unit vector `veci,vecj,veck`. C. Calculate the magnitude of the gravitational fore on a particle of mass 500 g placed at the origin.

Text Solution

Verified by Experts

The correct Answer is:
A, B, C

a. `V=((20N)/(kg))(x+y)`
`(GM)/R=(MLT^-2)/M,L`
`or (M^-1L^3T^-2M^1)/L=(ML^2T^-2)/M`
`or (M^0L^2T^-2=M^0L^2T^-2`
`:.LHS=RHS`
`b. vecE_(x,y)-20(N/(kg))veci-((20N)/kg)vecj`
`c. vecF=vecEm`
`=0.5kg[-((20N)/kg)veci-((20N)/veckg)vecj]`
`=-(10N)veci-(10N)vecj`
`:.|vecF|=sqrt(100)+(100))`
`=10sqrt2N`
Promotional Banner

Similar Questions

Explore conceptually related problems

The gravitational field in a region is given by vecE = (3hati- 4hatj) N kg^(-1) . Find out the work done (in joule) in displacing a particle by 1 m along the line 4y = 3x + 9 .

In a certain region, the electric potential is given by the formula V(x ,y, z) = 6xy - y + 2yz Find the components of electric field and the vector electric field at point (1, 1, 0) in this field. Find the vector of electric at (1, 1, 0).

ln a certain region, the electric potential is given by the formula V (x, y, z) = 2x^(2)y + 3y^(3)z - 4z^(4)x . Find the components of electric field and the vector electric field at point (1, 1, 1) in this field.

In a certain region of space, the potential is given by V=k(2x^(2)-y^(2)+z^(2)) . The electric field at the point (1, 1, 1) has magnitude:

A physical quantity is a phyical property of a phenomenon , body, or substance , that can be quantified by measurement. The magnitude of the components of a vector are to be considered dimensionally distinct. For example , rather than an undifferentiated length unit L, we may represent length in the x direction as L_(x) , and so forth. This requirement status ultimately from the requirement that each component of a physically meaningful equation (scaler or vector) must be dimensionally consistent . As as example , suppose we wish to calculate the drift S of a swimmer crossing a river flowing with velocity V_(x) and of widht D and he is swimming in direction perpendicular to the river flow with velocity V_(y) relation to river, assuming no use of directed lengths, the quantities of interest are then V_(x),V_(y) both dimensioned as (L)/(T) , S the drift and D width of river both having dimension L. with these four quantities, we may conclude tha the equation for the drift S may be written : S prop V_(x)^(a)V_(y)^(b)D^(c) Or dimensionally L=((L)/(T))^(a+b)xx(L)^(c) from which we may deduce that a+b+c=1 and a+b=0, which leaves one of these exponents undetermined. If, however, we use directed length dimensions, then V_(x) will be dimensioned as (L_(x))/(T), V_(y) as (L_(y))/(T), S as L_(x)" and " D as L_(y) . The dimensional equation becomes : L_(x)=((L_(x))/(T))^(a) ((L_(y))/(T))^(b)(L_(y))^(c) and we may solve completely as a=1,b=-1 and c=1. The increase in deductive power gained by the use of directed length dimensions is apparent. From the concept of directed dimension what is the formula for a range (R) of a cannon ball when it is fired with vertical velocity component V_(y) and a horizontal velocity component V_(x) , assuming it is fired on a flat surface. [Range also depends upon acceleration due to gravity , g and k is numerical constant]

A physical quantity is a phyical property of a phenomenon , body, or substance , that can be quantified by measurement. The magnitude of the components of a vector are to be considered dimensionally distinct. For example , rather than an undifferentiated length unit L, we may represent length in the x direction as L_(x) , and so forth. This requirement status ultimately from the requirement that each component of a physically meaningful equation (scaler or vector) must be dimensionally consistent . As as example , suppose we wish to calculate the drift S of a swimmer crossing a river flowing with velocity V_(x) and of widht D and he is swimming in direction perpendicular to the river flow with velocity V_(y) relation to river, assuming no use of directed lengths, the quantities of interest are then V_(x),V_(y) both dimensioned as (L)/(T) , S the drift and D width of river both having dimension L. with these four quantities, we may conclude tha the equation for the drift S may be written : S prop V_(x)^(a)V_(y)^(b)D^(c) Or dimensionally L=((L)/(T))^(a+b)xx(L)^(c) from which we may deduce that a+b+c=1 and a+b=0, which leaves one of these exponents undetermined. If, however, we use directed length dimensions, then V_(x) will be dimensioned as (L_(x))/(T), V_(y) as (L_(y))/(T), S as L_(x)" and " D as L_(y) . The dimensional equation becomes : L_(x)=((L_(x))/(T))^(a) ((L_(y))/(T))^(b)(L_(y))^(c) and we may solve completely as a=1,b=-1 and c=1. The increase in deductive power gained by the use of directed length dimensions is apparent. A conveyer belt of width D is moving along x-axis with velocity V. A man moving with velocity U on the belt in the direction perpedicular to the belt's velocity with respect to belt want to cross the belt. The correct expression for the drift (S) suffered by man is given by (k is numerical costant )

A physical quantity is a phyical property of a phenomenon , body, or substance , that can be quantified by measurement. The magnitude of the components of a vector are to be considered dimensionally distinct. For example , rather than an undifferentiated length unit L, we may represent length in the x direction as L_(x) , and so forth. This requirement status ultimately from the requirement that each component of a physically meaningful equation (scaler or vector) must be dimensionally consistent . As as example , suppose we wish to calculate the drift S of a swimmer crossing a river flowing with velocity V_(x) and of widht D and he is swimming in direction perpendicular to the river flow with velocity V_(y) relation to river, assuming no use of directed lengths, the quantities of interest are then V_(x),V_(y) both dimensioned as (L)/(T) , S the drift and D width of river both having dimension L. with these four quantities, we may conclude tha the equation for the drift S may be written : S prop V_(x)^(a)V_(y)^(b)D^(c) Or dimensionally L=((L)/(T))^(a+b)xx(L)^(c) from which we may deduce that a+b+c=1 and a+b=0, which leaves one of these exponents undetermined. If, however, we use directed length dimensions, then V_(x) will be dimensioned as (L_(x))/(T), V_(y) as (L_(y))/(T) , S as L_(x)" and " D as L_(y) . The dimensional equation becomes : L_(x)=((L_(x))/(T))^(a) ((L_(y))/(T))^(b)(L_(y))^(c) and we may solve completely as a=1,b=-1 and c=1. The increase in deductive power gained by the use of directed length dimensions is apparent. Which of the following is not a physical quantity

The figure shows a snap photograph of a vibrating string at t = 0 . The particle P is observed moving up with velocity 20sqrt(3) cm//s . The tangent at P makes an angle 60^(@) with x-axis. (a) Find the direction in which the wave is moving. (b) Write the equation of the wave. (c) The total energy carries by the wave per cycle of the string. Assuming that the mass per unit length of the string is 50g//m .

(a) In the formula X=3YZ^(2) , X and Z have dimensions of capcitnce and magnetic inlduction, respectively. What are the dimensions of Y in MKSQ system? (b) A qunatity X is given by epsilon_(0) L ((Delta)V)/((Delta)r) , where epsilon_(0) is the permittivity of free space, L is a lenght, DeltaV is a potential difference and Deltat is a time interval. Find the dimensions of X . (c) If E,M,J and G denote energy , mass , angular momentum and gravitational constant, respectively. find dimensons of (E J^(2))/(M^(5) G^(2)) (d) If e,h,c and epsilon_(0) are electronic charge, Planck 's constant speed of light and permittivity of free space. Find the dimensions of (e^(2))/(2epsilon_(0)hc) .

A uniform electric field pointing in positive x-direction exists in a region. Let A be the origin, B be the point on the x-axis at x=+1cm and C be the point on the y-axis at y=+1 cm. then the potetial at the points A,B and C satisfy a. V_AltV_B , b. V_AgtV_B c. V_AltV_C d. V_AgtV_C