Home
Class 11
PHYSICS
A simple pendulum is constructed by hang...

A simple pendulum is constructed by hanging a heavy ball by a 5.0 long string. It undergoes small oscillation. a. How many oscillations does it make per second? b. What will be the frequency if the system is taken on the moon where acceleration due to gravitation of the moon is `1.67 ms^-2?`

Text Solution

Verified by Experts

The correct Answer is:
A, B, C

`L=5m`
a. `T=2pisqrt(l/g)`
`=2pisqrt(5/10)`
`=2pisqrt0.5=2pi(0.7)`
In `2pi(0.7)sec`, the body will complete `1/(2pi) (.7)` oscillation
`:.f=1/(2pi)(0.7)`
`=10/(14pi)=0.71/pi` times
b. When it is taken to the moon
`T=2pisqrt((l/g))`
Where `g` is Acceleration on the moon
`=2pisqrt(5/1.67)`
`f=1/T` `1/(2pi)sqrt(1.67/5)=1/(2pi)(0.557)`
`=1/(2pisqrt3)`
Promotional Banner

Similar Questions

Explore conceptually related problems

An almost inertia-less rod of length l3.5 m can rotate freely around a horizontal axis passing through its top end. At the bottom end of the roa a small ball of mass m andat the mid-point another small ball of mass 3m is attached. Find the angular frequency (in SI units) of small oscillations of the system about the equilibrium position. Gravitational acceleration is g=9.8 m//s^(2).

A simple pendulum of length 40 cm oscillates with an angular amplitude of 0.04 rad. Find a. the time period b. the linear amplitude of the bob, c. The speed of the bob when the strig makes 0.02 rad with the vertical and d. the angular acceleration when the bob is in moemntary rest. Take g=10 ms^-2 .

Two identical small balls each of mass m are rigidly affixed at the ends of light rigid rod of length 1.5 m and the assmebly is placed symmetrically on an elevated protrusion of width l as shown in the figure. The rod-ball assmebly is titled by a small angle theta in the vertical plane as shown in the figure and released. Estimate time-period (in seconds) of the oscillation of the rod-ball assembly assuming collisions of the rod with corners of the protrusion to be perfectly elastic and the rod does not slide on the corners. Assume theta=gl (numerically in radians), where g is the acceleration of free fall.

The acceleration due to gravity on the surface of moon is 1.7 m s^(-2) . What is the time period of a simple pendulum on the surface of moon if its time period on the surface of earth is 3.5 s ? (g on the surface of earth is 9.8 m s^(-2) )

The transverse displacement of a string (clamped at its both ends) is given by y(x, t) = 0.06 sin ((2 x)/(3) x) cos (120 pi t) where x and y are in m and t in s. The length of the string is 1.5 m and its mass is 3.0 xx 10^(-2) kg . Answer the following : (a) Does the function represent a travelling wave or a stationary wave? (b) Interpret the wave as a superposition of two waves travelling in opposite directions. What is the wavelength, frequency , and speed of each wave ? (c ) Determine the tension in the string.

A player throws a ball upwards with an initial speed of 29.4 ms^(-1) (a) What is the direction of acceleration during the upward motion of the ball ? (b) What are the velocity and acceleration of the ball at the highest point of its motion ? (c) Choose the x = 0 m and t=0 s to be the location and time of the ball at its highest point vertically downward direction to be the positive direction of x-axis and give the signs of position, velocity and acceleration of the ball during its upward and downward motion. (d) To what height does the ball rise and after how long does the ball return to the player's hands ? (Take g = 9.8 ms^(-2) and neglect air resistance).

A player throwsa a ball upwards with an initial speed of 29.4 ms^(-1) . (i) What is the direction of acceleration during the upwared motion of the ball? (ii) What are the velocity and acceleration of the ball at the highest point of its motion? (iii) Choose the x=0 and t=0 to be the location and time of the ball at its highest point, vertically downward direction to be the positive direction of X-axis, and give the signs of positive, velocity and acceleration of the ball during its upward, and downward motion. (iv) To what height does the ball rise and after how long does the ball return to the player's hand?( Take g =9.8 ms^(-2) , and neglect air resistance).