Home
Class 11
PHYSICS
The ratio (Cp / Cv) for a gas is 1.29 . ...

The ratio `(C_p / C_v)` for a gas is 1.29 . What is the degree of freedom of the molecules of this gas?

Promotional Banner

Similar Questions

Explore conceptually related problems

A gas has molar heat capacity C = 37.55 J "mole"^(-1)K^(-1) , in the process PT = constant, find the number of degree of freedom of the molecules of the gas.

An ideal gas having initial pressure p, volume V and temperature T is allowed to expand adiabatically until its volume becomes 5.66V, while its temperature falls to T//2 . (a) How many degrees of freedom do the gas molecules have? (b) Obtain the work done by the gas during the expansion as a function of the initial pressure p and volume V. Given that (5.66)^0.4=2

Which of the following expressions is correct ( n = no . of moles of the gas, N_(A) = Avogadro constant m = mass of 1 molecule of the gas, N = no of molecules of the gas) ? .

Assertion : The ratio C_(P)// C_(upsilon) for a diatomic gas is more than that for a monoatomic gas. Reason : The moleculess of a monoatomic gas have more degrees of freedom than those of a diatomic gas.

A gas has volume V and pressure p . The total translational kinetic energy of all the molecules of the gas is

The rms speed of helium gas at 27^(@)C and 1 atm pressure is 900 ms^(-1) . Then the rms speed of helium molecules at temperature 27^(@)C and 2 atm pressure is

A gaseous mixture enclosed in a vessel of volume V consists of one gram mole of gas A with gamma = (C_(P))/(C_(V)) = (5)/(3) an another gas B with gamma = (7)/(5) at a certain temperature T . The gram molecular weights of the gases A and B are 4 and 32 respectively. The gases A and B do not react with each other and are assumed to be ideal. The gaseous mixture follows the equation PV^(19//13) = constant , in adiabatic process. Find the number of gram moles of the gas B in the gaseous mixture.

Molar heat capacity of an ideal gas in the process PV^(x) = constant , is given by : C = (R)/(gamma-1) + (R)/(1-x) . An ideal diatomic gas with C_(V) = (5R)/(2) occupies a volume V_(1) at a pressure P_(1) . The gas undergoes a process in which the pressure is proportional to the volume. At the end of the process the rms speed of the gas molecules has doubled from its initial value. The molar heat capacity of the gas in the given process is :-

Molar heat capacity of an ideal gas in the process PV^(x) = constant , is given by : C = (R)/(gamma-1) + (R)/(1-x) . An ideal diatomic gas with C_(V) = (5R)/(2) occupies a volume V_(1) at a pressure P_(1) . The gas undergoes a process in which the pressure is proportional to the volume. At the end of the process the rms speed of the gas molecules has doubled from its initial value. Heat supplied to the gas in the given process is :

One mole of an ideal gas undergoes a process whose molar heat capacity is 4R and in which work done by gas for small change in temperature is given by the relation dW=2RdT , then find the degree of freedom of gas