Home
Class 12
MATHS
for a fixed positive integer n let then ...

for a fixed positive integer `n` let then `D/{(n-1)!(n+1)!(n+3)!}` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If i=sqrt-1 and n is a positive integer, then i^(n)+i^(n+1)+i^(n+3_ is equal to

If n is a positive integer,then (1+i)^(n)+(1-1)^(n) is equal to

For a fixed positive integer n prove that: D = |[n!, (n+1)!, (n+2)!],[(n+1)!,(n+2)!,(n+3)!],[(n+2)!,(n+3)!,(n+4)!]|= ( n !)^3(2n^3+8n^2+10n+4 )

If i= sqrt-1 and n is a positive integer , then i^(n) + i^(n + 1) + i^(n + 2) + i^(n + 3) is equal to

If a ,\ m ,\ n are positive integers, then {root(m)root (n)a}^(m n) is equal to (a) a^(m n) (b) a (c) a^(m/n) (d) 1

For a fixed positive integer n , if =|n !(n+1)!(n+2)!(n+1)!(n+2)!(n+3)!(n+2)!(n+3)!(n+4)!| , then show that [/((n !)^3)-4] is divisible by ndot

For a fixed positive integer n , if =|n !(n+1)!(n+2)!(n+1)!(n+2)!(n+3)!(n+2)!(n+3)!(n+4)!| , then show that [/((n !)^3)-4] is divisible by ndot

For a fixed positive integer n , if =|n !(n+1)!(n+2)!(n+1)!(n+2)!(n+3)!(n+2)!(n+3)!(n+4)!| , then show that [/((n !)^3)-4] is divisible by ndot