Home
Class 14
REASONING
ALL+NO#!#SOME+NO...

ALL+NO#!#SOME+NO

Promotional Banner

Similar Questions

Explore conceptually related problems

Statements: All Employees are Owners No Owner is a supervisor Some employees are not Managers All managers are Gatekeepers Some supervisor are Managers Conclusions: I. Some managers who are not Supervisor are Employees II. Some supervisor if they are not Gatekeepers are also not Employees

Statements: All Employees are Owners No Owner is a supervisor Some employees are not Managers All managers are Gatekeepers Some supervisor are Managers Conclusions: I. Some Gatekeepers are not Supervisor II. Some Gatekeepers that are Supervisors are not Owners.

Statements:- All bulbs are birds. Some birds are butterflies. Conclusions:- I. All butterflies are bulbs. II. Some bulbs are butterflies.

Statement : All Cameras are books Some pens are Cameras. Conclusion: I. All pens are books II. Some books are pens

Statements: Some trees are tall All tall are healthy all healthy are not all Conclusions: I. Some healthy are tall II. Some treese are not tall.

Statements:- All chairs are tables. Some tables are sofasets Conclusion:- I. Some sofasets are chairs. II. All sofasets are chairs. III. Some chairs are sofasets.

Recommended Questions
  1. ALL+NO#!#SOME+NO

    Text Solution

    |

  2. निचे दिए गए चित्र में AC,10 ओम प्रतिरोध का एकसमान परिच्छेद का 1.0 मीटर...

    Text Solution

    |

  3. दर्शाये गये चित्र में मीटर ब्रिज के तार की लम्बाई 100 सेमी हैं । जब AJ...

    Text Solution

    |

  4. संलग्न चित्र में, यदि धारामापी G में कोई विक्षेप नहीं हैं तो एक दशा मे...

    Text Solution

    |

  5. निम्न रेखिक समीकरणो के युग्मो में से किसका एक अद्वितीय हल है , किस...

    Text Solution

    |

  6. निम्न रेखिक समीकरणो के युग्मो में से किसका एक अद्वितीय हल है , किस...

    Text Solution

    |

  7. निम्न रेखिक समीकरणो के युग्मो में से किसका एक अद्वितीय हल है , किस...

    Text Solution

    |

  8. k किस मान के लिए , निम्न रेखिक समीकरण के युग्म का कोई हल नहीं है ...

    Text Solution

    |

  9. यदि 10 टिकटों पर 1 से 10 तक की (प्रत्येक पर एक) संख्यायें लिखी हुई हैं...

    Text Solution

    |