Home
Class 14
MATHS
If p(t)=2+(t)/(2)+t^(2)-(t^(3))/(3), the...

If `p(t)=2+(t)/(2)+t^(2)-(t^(3))/(3)`, then `p(-1)` is

A

`(15)/(6)`

B

`(1)/(6)`

C

`(17)/(6)`

D

`(13)/(6)`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( p(-1) \) for the function \( p(t) = 2 + \frac{t}{2} + t^2 - \frac{t^3}{3} \), we will substitute \( t = -1 \) into the equation and simplify step by step. ### Step-by-Step Solution: 1. **Substitute \( t = -1 \) into the function**: \[ p(-1) = 2 + \frac{-1}{2} + (-1)^2 - \frac{(-1)^3}{3} \] 2. **Calculate each term**: - The first term is \( 2 \). - The second term is \( \frac{-1}{2} \). - The third term is \( (-1)^2 = 1 \). - The fourth term is \( -\frac{-1}{3} = \frac{1}{3} \). So, we can rewrite the equation: \[ p(-1) = 2 - \frac{1}{2} + 1 + \frac{1}{3} \] 3. **Combine the constant terms**: - Combine \( 2 + 1 = 3 \). - Now we have: \[ p(-1) = 3 - \frac{1}{2} + \frac{1}{3} \] 4. **Find a common denominator**: - The common denominator for \( 2 \) and \( 3 \) is \( 6 \). - Convert each term: - \( 3 = \frac{18}{6} \) - \( -\frac{1}{2} = -\frac{3}{6} \) - \( \frac{1}{3} = \frac{2}{6} \) 5. **Combine the fractions**: \[ p(-1) = \frac{18}{6} - \frac{3}{6} + \frac{2}{6} = \frac{18 - 3 + 2}{6} = \frac{17}{6} \] ### Final Answer: \[ p(-1) = \frac{17}{6} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find p(0), p(1) and p(2) for each of the following polynomials : (i) p(y)=y^(2)-y+1 (ii) p(t)=2+t+2t^(2)-t^(3) (iii) p(x)=x^(3) (iv) p(x)=(x-1)(x+1)

If S=(t^(3))/(3)-2t^(2)+3t+4 , then

If x=2t+3t^(2),y=t^(2)+2t^(3)," then: "(y_(1))^(2)+2(y_(1))^(3)=

Find p(0),p(1) and p(2) for each of the following polynomials: (i) p(y)=y^(2)-y+1 (ii) p(t)=2+t+2t^(2)-t^(3) (iv) p(x)=(x-1)(x+1)

Prove that the area of the triangle whose vertices are : (at_(1)^(2),2at_(1)) , (at_(2)^(2),2at_(2)) , (at_(3)^(2),2at_(3)) is a^(2)(t_(1)-t_(2))(t_(2)-t_(3))(t_(3)-t_(1)) .

If P=[[(sqrt(3))/(2),(1)/(2)-(1)/(2),(sqrt(3))/(2)]] and A=[[1,10,1]] and Q=PAP^(T) and x,=P^(T)Q^(2005)P then x is

The equation of the normal to the curve parametrically represented by x=t^(2)+3t-8 and y=2t^(2)-2t-5 at the point P(2,-1) is

Prove that: tan^-1 +tan^-1 ((2t)/(1-t^2))=tan^-1( (3t-t^3)/(1-3t^2)), if - 1/sqrt(3),xlt 1/sqrt(3)