Home
Class 14
MATHS
If x+(1)/(x)=2, then find the value of (...

If `x+(1)/(x)=2`, then find the value of `(sqrt(x)+(1)/(sqrt(x)))`

A

`sqrt(2)`

B

2

C

`sqrt(3)`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x + \frac{1}{x} = 2 \) and find the value of \( \sqrt{x} + \frac{1}{\sqrt{x}} \), we can follow these steps: ### Step 1: Start with the given equation We have: \[ x + \frac{1}{x} = 2 \] ### Step 2: Square both sides To find \( \sqrt{x} + \frac{1}{\sqrt{x}} \), we can square \( \sqrt{x} + \frac{1}{\sqrt{x}} \): \[ \left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^2 = x + 2 + \frac{1}{x} \] ### Step 3: Substitute the value from the given equation From the given equation, we know that \( x + \frac{1}{x} = 2 \). Therefore, we can substitute this into our squared equation: \[ \left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^2 = 2 + 2 \] ### Step 4: Simplify the equation Now, simplify the right-hand side: \[ \left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^2 = 4 \] ### Step 5: Take the square root of both sides Taking the square root of both sides gives us: \[ \sqrt{x} + \frac{1}{\sqrt{x}} = 2 \quad \text{or} \quad \sqrt{x} + \frac{1}{\sqrt{x}} = -2 \] ### Step 6: Determine the valid solution Since \( \sqrt{x} \) and \( \frac{1}{\sqrt{x}} \) are both positive for real \( x \), we discard the negative solution. Thus, we have: \[ \sqrt{x} + \frac{1}{\sqrt{x}} = 2 \] ### Final Answer The value of \( \sqrt{x} + \frac{1}{\sqrt{x}} \) is: \[ \boxed{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If [3(3sqrt(x)-(1)/(3sqrt(x)))]^((1)/(3))=2 then find the value of 3sqrt(x)+(1)/(3sqrt(x))

If x=cot75^(@) , then find the value of sqrt(x)+(1)/(sqrt(x)) .

If x = 3 + 2 sqrt(2) , then find the value of ( sqrt(x) - (1)/(sqrt(x)) ) .

Find the value of sqrt(x)-(1)/(sqrt(x)) if x=3+2sqrt(2)

Find the value of sqrt(x)+(1)/(sqrt(x)) if x=2-sqrt(3)

If x=3+2sqrt(2), then find the value of sqrt(x)+(1)/(x)

If x=2+sqrt(3), then the value of sqrt(x)+(1)/(sqrt(x)) is:

If x=(1)/(2-sqrt(3)) then find the value of x+(1)/(x)

Evaluate : ( sqrt(x) + 1/ sqrt(x) )^2