Home
Class 14
MATHS
The simplified value of [(1)/(sqrt(2)+sq...

The simplified value of `[(1)/(sqrt(2)+sqrt(3)-sqrt(5))+(1)/(sqrt(2)-sqrt(3)-sqrt(5))]` is

A

1

B

`(2)/(sqrt(2))`

C

`(sqrt(2))/(2)`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \(\left[\frac{1}{\sqrt{2} + \sqrt{3} - \sqrt{5}} + \frac{1}{\sqrt{2} - \sqrt{3} - \sqrt{5}}\right]\), we will follow these steps: ### Step 1: Combine the Fractions We start by finding a common denominator for the two fractions. The common denominator will be the product of the two denominators: \[ \text{Common Denominator} = (\sqrt{2} + \sqrt{3} - \sqrt{5})(\sqrt{2} - \sqrt{3} - \sqrt{5}) \] Thus, we can write: \[ \frac{1}{\sqrt{2} + \sqrt{3} - \sqrt{5}} + \frac{1}{\sqrt{2} - \sqrt{3} - \sqrt{5}} = \frac{(\sqrt{2} - \sqrt{3} - \sqrt{5}) + (\sqrt{2} + \sqrt{3} - \sqrt{5})}{(\sqrt{2} + \sqrt{3} - \sqrt{5})(\sqrt{2} - \sqrt{3} - \sqrt{5})} \] ### Step 2: Simplify the Numerator Now, simplify the numerator: \[ (\sqrt{2} - \sqrt{3} - \sqrt{5}) + (\sqrt{2} + \sqrt{3} - \sqrt{5}) = 2\sqrt{2} - 2\sqrt{5} \] ### Step 3: Simplify the Denominator Next, we need to simplify the denominator: \[ (\sqrt{2} + \sqrt{3} - \sqrt{5})(\sqrt{2} - \sqrt{3} - \sqrt{5}) = (\sqrt{2})^2 - (\sqrt{3})^2 - (\sqrt{5})^2 + \text{cross terms} \] Calculating this gives: \[ = 2 - 3 - 5 + \text{cross terms} \] The cross terms will cancel out, leading to: \[ = 2 - 3 - 5 = -6 \] ### Step 4: Combine the Results Now we can combine the results: \[ \frac{2\sqrt{2} - 2\sqrt{5}}{-6} = \frac{-1}{3}(\sqrt{2} - \sqrt{5}) \] ### Step 5: Final Simplification We can further simplify this: \[ = \frac{1}{3}(\sqrt{5} - \sqrt{2}) \] Thus, the simplified value of the original expression is: \[ \frac{\sqrt{5} - \sqrt{2}}{3} \] ### Final Answer The simplified value is: \[ \frac{\sqrt{5} - \sqrt{2}}{3} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the simplified value of-: tan^-1(1/(sqrt(x^2-1)))

Simplified value of sqrt(17+12sqrt(2)) - tan ((pi)/(8)) is