Home
Class 14
MATHS
If ((5)/(7))^(4) xx ((5)/(7))^(-3) = ((5...

If `((5)/(7))^(4) xx ((5)/(7))^(-3) = ((5)/(7))^(5x -2)`, then x is equal to

A

`(2)/(5)`

B

`(3)/(5)`

C

`(4)/(5)`

D

`(1)/(5)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(\left(\frac{5}{7}\right)^{4} \times \left(\frac{5}{7}\right)^{-3} = \left(\frac{5}{7}\right)^{5x - 2}\), we can follow these steps: ### Step 1: Apply the Law of Exponents Using the property of exponents that states \(a^m \times a^n = a^{m+n}\), we can combine the left side of the equation: \[ \left(\frac{5}{7}\right)^{4} \times \left(\frac{5}{7}\right)^{-3} = \left(\frac{5}{7}\right)^{4 + (-3)} = \left(\frac{5}{7}\right)^{4 - 3} = \left(\frac{5}{7}\right)^{1} \] ### Step 2: Set the Exponents Equal Now we have: \[ \left(\frac{5}{7}\right)^{1} = \left(\frac{5}{7}\right)^{5x - 2} \] Since the bases are the same, we can set the exponents equal to each other: \[ 1 = 5x - 2 \] ### Step 3: Solve for \(x\) Now, we will solve for \(x\): 1. Add 2 to both sides: \[ 1 + 2 = 5x \] \[ 3 = 5x \] 2. Divide both sides by 5: \[ x = \frac{3}{5} \] ### Final Answer Thus, the value of \(x\) is: \[ \boxed{\frac{3}{5}} \]
Promotional Banner