Home
Class 14
MATHS
The value of sqrt(91 + sqrt(70+ sqrt(121...

The value of `sqrt(91 + sqrt(70+ sqrt(121)))` is

A

10

B

11

C

12

D

9

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sqrt{91 + \sqrt{70 + \sqrt{121}}} \), we will follow these steps: ### Step 1: Simplify the innermost square root First, we simplify \( \sqrt{121} \): \[ \sqrt{121} = 11 \] ### Step 2: Substitute back into the expression Now, substitute \( \sqrt{121} \) back into the expression: \[ \sqrt{70 + \sqrt{121}} = \sqrt{70 + 11} = \sqrt{81} \] ### Step 3: Simplify the square root Next, simplify \( \sqrt{81} \): \[ \sqrt{81} = 9 \] ### Step 4: Substitute back into the outer expression Now, substitute \( \sqrt{81} \) back into the outer expression: \[ \sqrt{91 + \sqrt{70 + \sqrt{121}}} = \sqrt{91 + 9} = \sqrt{100} \] ### Step 5: Simplify the final square root Finally, simplify \( \sqrt{100} \): \[ \sqrt{100} = 10 \] Thus, the value of \( \sqrt{91 + \sqrt{70 + \sqrt{121}}} \) is \( 10 \). ### Final Answer: \[ \text{The value is } 10. \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sqrt18 + sqrt50 - sqrt32 is

The value of sqrt(2 + sqrt(2+sqrt(2+....))) is :