Home
Class 14
MATHS
The fourth proportional to p^(2) - pq + ...

The fourth proportional to `p^(2) - pq + q^(2), p^(3) + q^(3), p- q` is

A

`(p+q)`

B

`(p-q)`

C

`(p^(2)- q^(2))`

D

`(q^(2)- p^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the fourth proportional to the terms \( p^2 - pq + q^2 \), \( p^3 + q^3 \), and \( p - q \), we can follow these steps: ### Step 1: Understand the concept of fourth proportional The fourth proportional \( x \) to three numbers \( a \), \( b \), and \( c \) is defined such that: \[ \frac{a}{b} = \frac{c}{x} \] This means we can express the relationship as: \[ a \cdot x = b \cdot c \] ### Step 2: Identify the values Let: - \( a = p^2 - pq + q^2 \) - \( b = p^3 + q^3 \) - \( c = p - q \) ### Step 3: Set up the equation Using the relationship from Step 1, we can write: \[ (p^2 - pq + q^2) \cdot x = (p^3 + q^3) \cdot (p - q) \] ### Step 4: Solve for \( x \) To find \( x \), we rearrange the equation: \[ x = \frac{(p^3 + q^3)(p - q)}{(p^2 - pq + q^2)} \] ### Step 5: Simplify the expression Now, we can simplify the expression for \( x \). We know that: \[ p^3 + q^3 = (p + q)(p^2 - pq + q^2) \] Thus, substituting this into our expression for \( x \): \[ x = \frac{(p + q)(p^2 - pq + q^2)(p - q)}{(p^2 - pq + q^2)} \] The \( (p^2 - pq + q^2) \) terms cancel out: \[ x = (p + q)(p - q) \] ### Step 6: Final expression Now we can express the final result: \[ x = p^2 - q^2 \] ### Conclusion The fourth proportional to \( p^2 - pq + q^2 \), \( p^3 + q^3 \), and \( p - q \) is: \[ \boxed{p^2 - q^2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Verify that (p-q) ( p ^(2) + pq + q ^(2)) = p ^(3) - q ^(3)

Add : 6p^(2)q - 5pq^(2) -3pq, 8pq^(2)+2p^(2)q -2pq

Subtract: 4pq - 5a^(2) - 3p^(2) "from" 5p^(2) + 3q^(2) - pq

Common factor of 11 pq ^(2); 121 p ^(2) q ^(3) and 1331 p ^(2) q

write the degree of the polynomial p^(2)q^(3)+p^(3)q^(2)-p^(3)q^(3) .

If p = -2, q = - 1 and r = 3, find the value of (i) p^(2) + q^(2) - r^(2) (ii) 2p^(2) - q^(2) + 3r^(2) (iii) p - q - r (iv) p^(3) + q^(3) + r^(3) + 3 pqr (v) 3p^(2) q + 5pq^(2) + 2 pqr (vi) p^(4) + q^(4) - r^(4)

If p + q = 6 and pq = 8 , then p^(3) + q^(3) is equal to