Home
Class 14
MATHS
Find the middle term in the expansion of...

Find the middle term in the expansion of `((3x^(2))/(2)+(x)/(3))^(3)`

A

`(189)/(16)x^(14)`

B

`(21)/(8)x^(13)`

C

Both a & b

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the middle term in the expansion of \(\left(\frac{3x^2}{2} + \frac{x}{3}\right)^3\), we will follow these steps: ### Step 1: Identify the value of \(n\) In the expression \(\left(a + b\right)^n\), we have: - \(a = \frac{3x^2}{2}\) - \(b = \frac{x}{3}\) - \(n = 3\) ### Step 2: Determine the number of terms in the expansion The number of terms in the expansion of \((a + b)^n\) is \(n + 1\). Therefore, for \(n = 3\): \[ \text{Number of terms} = 3 + 1 = 4 \] ### Step 3: Find the middle term(s) Since there are 4 terms, the middle terms will be the 2nd and 3rd terms (as \(n\) is even). We will denote the \(k\)-th term in the expansion as: \[ T_k = \binom{n}{k} a^{n-k} b^k \] where \(k\) starts from 0. ### Step 4: Calculate the 2nd term (\(T_2\)) For \(T_2\) (where \(k = 1\)): \[ T_2 = \binom{3}{1} \left(\frac{3x^2}{2}\right)^{3-1} \left(\frac{x}{3}\right)^1 \] Calculating this: \[ T_2 = \binom{3}{1} \left(\frac{3x^2}{2}\right)^{2} \left(\frac{x}{3}\right) \] \[ = 3 \cdot \left(\frac{9x^4}{4}\right) \cdot \left(\frac{x}{3}\right) \] \[ = 3 \cdot \frac{9x^4}{4} \cdot \frac{x}{3} \] \[ = \frac{9x^5}{4} \] ### Step 5: Calculate the 3rd term (\(T_3\)) For \(T_3\) (where \(k = 2\)): \[ T_3 = \binom{3}{2} \left(\frac{3x^2}{2}\right)^{3-2} \left(\frac{x}{3}\right)^2 \] Calculating this: \[ T_3 = \binom{3}{2} \left(\frac{3x^2}{2}\right)^{1} \left(\frac{x}{3}\right)^{2} \] \[ = 3 \cdot \left(\frac{3x^2}{2}\right) \cdot \left(\frac{x^2}{9}\right) \] \[ = 3 \cdot \frac{3x^2}{2} \cdot \frac{x^2}{9} \] \[ = 3 \cdot \frac{3x^4}{18} \] \[ = \frac{3x^4}{6} = \frac{x^4}{2} \] ### Final Result The middle terms in the expansion are: - \(T_2 = \frac{9x^5}{4}\) - \(T_3 = \frac{x^4}{2}\)
Promotional Banner