Home
Class 14
MATHS
If alpha&beta are roots of the equations...

If `alpha&beta` are roots of the equations `3x^(2)+8x+2=0`, find the values of `alpha^(3)+beta^(3)`

A

`245//18`

B

`-368//27`

C

`-219//27`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \alpha^3 + \beta^3 \) given that \( \alpha \) and \( \beta \) are the roots of the equation \( 3x^2 + 8x + 2 = 0 \), we will use the identities related to the sum and product of roots. ### Step-by-Step Solution: **Step 1: Identify the coefficients of the quadratic equation.** The given quadratic equation is: \[ 3x^2 + 8x + 2 = 0 \] Here, \( a = 3 \), \( b = 8 \), and \( c = 2 \). **Step 2: Calculate the sum of the roots \( \alpha + \beta \).** Using Vieta's formulas, the sum of the roots \( \alpha + \beta \) is given by: \[ \alpha + \beta = -\frac{b}{a} = -\frac{8}{3} \] **Step 3: Calculate the product of the roots \( \alpha \beta \).** The product of the roots \( \alpha \beta \) is given by: \[ \alpha \beta = \frac{c}{a} = \frac{2}{3} \] **Step 4: Use the identity for \( \alpha^3 + \beta^3 \).** We can use the identity: \[ \alpha^3 + \beta^3 = (\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta) \] Substituting the values we found: \[ \alpha^3 + \beta^3 = \left(-\frac{8}{3}\right)^3 - 3\left(\frac{2}{3}\right)\left(-\frac{8}{3}\right) \] **Step 5: Calculate \( \left(-\frac{8}{3}\right)^3 \).** \[ \left(-\frac{8}{3}\right)^3 = -\frac{512}{27} \] **Step 6: Calculate \( 3\alpha\beta(\alpha + \beta) \).** First, calculate \( 3\left(\frac{2}{3}\right)\left(-\frac{8}{3}\right) \): \[ 3\left(\frac{2}{3}\right)\left(-\frac{8}{3}\right) = 2 \cdot -\frac{8}{3} = -\frac{16}{3} \] **Step 7: Combine the results.** Now substituting back into the equation: \[ \alpha^3 + \beta^3 = -\frac{512}{27} - \left(-\frac{16}{3}\right) \] To combine these, convert \(-\frac{16}{3}\) to have a common denominator of 27: \[ -\frac{16}{3} = -\frac{16 \cdot 9}{27} = -\frac{144}{27} \] Thus: \[ \alpha^3 + \beta^3 = -\frac{512}{27} + \frac{144}{27} = -\frac{368}{27} \] ### Final Answer: \[ \alpha^3 + \beta^3 = -\frac{368}{27} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha , beta roots of the equations x^(2) - 5x + 6 = 0 , find the value of alpha^(2) - beta^(2) .

If alpha and beta are the roots of the equation 3x^(2)+7x+3=0 Find the value of alpha beta:

If alpha and beta are roots of the equation x^(2)+x-3=0 then value of alpha^(3)-4 beta^(2)+24 is

If alpha,beta are the roots of the equation 8x^(2)-3x+27=0, then the value of ((alpha^(2))/(beta))^((1)/(3))+((beta^(2))/(alpha))^((1)/(3)) is

If alpha,beta be the roots of the equation 3x^(2)-6x+4=0, then find the value of ((alpha^(2))/(beta)+(beta^(2))/(alpha))+((alpha)/(beta)+(beta)/(alpha))+2((1)/(alpha)+(1)/(beta))+3 alpha beta

If alpha and beta are the roots of the equation x^(2)+3x-2(x+7)=0 then the values of alpha^(3)+beta^(3) is :

If alpha and beta are the roots of the equation x^(2)+3x-2(x+7)=0 then the values of alpha^(3)+beta^(3) is

If alpha and beta are the roots of the equation x^(2) -x+7=0 , then find the value of alpha^(2) + beta^(2) .