Home
Class 14
MATHS
If a+b+c=11,ab+bc+ca=20, find the value ...

If `a+b+c=11,ab+bc+ca=20`, find the value of (i) `a^(2)+b^(2)+c^(2)` and (ii) `a^(3)+b^(3)+c^(3)-3abc`.

A

81,61

B

81, 671

C

27,61

D

671,81

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( a^2 + b^2 + c^2 \) and \( a^3 + b^3 + c^3 - 3abc \) given the equations: 1. \( a + b + c = 11 \) 2. \( ab + bc + ca = 20 \) ### Step 1: Finding \( a^2 + b^2 + c^2 \) We can use the identity: \[ a^2 + b^2 + c^2 = (a + b + c)^2 - 2(ab + bc + ca) \] Substituting the known values: \[ a + b + c = 11 \quad \text{and} \quad ab + bc + ca = 20 \] Calculating \( (a + b + c)^2 \): \[ (a + b + c)^2 = 11^2 = 121 \] Now substituting into the identity: \[ a^2 + b^2 + c^2 = 121 - 2 \times 20 \] Calculating \( 2 \times 20 \): \[ 2 \times 20 = 40 \] Now substituting back: \[ a^2 + b^2 + c^2 = 121 - 40 = 81 \] ### Step 2: Finding \( a^3 + b^3 + c^3 - 3abc \) We can use the identity: \[ a^3 + b^3 + c^3 - 3abc = (a + b + c)((a + b + c)^2 - 3(ab + ac + bc)) \] Substituting the known values: \[ a + b + c = 11 \] We already calculated \( a^2 + b^2 + c^2 = 81 \), so now we need \( (a + b + c)^2 - 3(ab + ac + bc) \): Calculating \( 3(ab + ac + bc) \): \[ 3(ab + ac + bc) = 3 \times 20 = 60 \] Now substituting: \[ (a + b + c)^2 - 3(ab + ac + bc) = 121 - 60 = 61 \] Now substituting back into the identity: \[ a^3 + b^3 + c^3 - 3abc = 11 \times 61 \] Calculating \( 11 \times 61 \): \[ 11 \times 61 = 671 \] ### Final Answers (i) \( a^2 + b^2 + c^2 = 81 \) (ii) \( a^3 + b^3 + c^3 - 3abc = 671 \)
Promotional Banner