Home
Class 14
MATHS
If a+b+c=11 and ab+bc+ca=35, find the va...

If `a+b+c=11` and `ab+bc+ca=35`, find the value of `(a-b)^(2)+(b-c)^(2)+(c-a)^(2)`

A

24

B

64

C

16

D

32

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \((a-b)^2 + (b-c)^2 + (c-a)^2\) given that \(a + b + c = 11\) and \(ab + bc + ca = 35\). ### Step-by-Step Solution: 1. **Use the identity for the expression**: We can use the identity: \[ (a-b)^2 + (b-c)^2 + (c-a)^2 = 2(a^2 + b^2 + c^2) - 2(ab + ac + bc) \] This allows us to express the desired quantity in terms of \(a^2 + b^2 + c^2\) and \(ab + ac + bc\). 2. **Calculate \(a^2 + b^2 + c^2\)**: We know: \[ (a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + ac + bc) \] Substituting the known values: \[ 11^2 = a^2 + b^2 + c^2 + 2(35) \] This simplifies to: \[ 121 = a^2 + b^2 + c^2 + 70 \] Rearranging gives: \[ a^2 + b^2 + c^2 = 121 - 70 = 51 \] 3. **Substitute values into the identity**: Now we substitute \(a^2 + b^2 + c^2\) and \(ab + ac + bc\) into the identity: \[ (a-b)^2 + (b-c)^2 + (c-a)^2 = 2(51) - 2(35) \] This simplifies to: \[ = 102 - 70 = 32 \] 4. **Final answer**: Therefore, the value of \((a-b)^2 + (b-c)^2 + (c-a)^2\) is: \[ \boxed{32} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If a+b+c=9 and ab+bc+ca=23, find the value of a^(2)+b^(2)+c^(2)

If a+b+c=9 and ab+bc+ca=26, find the value of a^(2)+b^(2)+c^(2).

If a+b+c=9 and ab+bc+ca=35, find the value of a^(3)+b^(3)+c^(3)-3abc .

If a + b + c = 6 and ab+bc+ca= 12. find the value of a^2+b^2+c^2

If a+b+c=6 and ab+bc+ca=11 find the value of a^(3)+b^(3)+c^(3)-3abc

If a+b+c=0, then find the value of (a^(2))/(bc)+(b^(2))/(ca)+(c^(2))/(ab)

If a+b+c=6 and ab+bc+ca=11, find the value of a^(3)+b^(3)+c^(3)-3abc.

If a^(2)+b^(2)+c^(2)=19 and ab+bc+ca=3 Find the value of a+b+c

(i) If a^(2)+b^(2)+c^(2)=20 " and" a+b+c=0, " find " ab+bc+ac . (ii) If a^(2)+b^(2)+c^(2)=250 " and" ab+bc+ca=3, " find" a+b+c . (iii) If a+b+c=11 and ab+bc+ca=25, then find the value of a^(3)+b^(3)+c^(3)-3 abc.

If a^(2)+b^(2)+c^(2)=16 and ab+bc+ca=10 find the value of a+b+c