Home
Class 14
MATHS
If f(x, y, z)= x+ y- z, then f((15)(8), ...

If `f(x, y, z)= x+ y- z`, then `f((15)_(8), (15)_(10), (15)_(16))` = ?

A

16

B

7

C

10

D

All of the above

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the function \( f(x, y, z) = x + y - z \) using the values of \( x \), \( y \), and \( z \) given in different bases. Let's break it down step by step. ### Step 1: Convert \( (15)_8 \) to Decimal To convert the number \( (15)_8 \) (which is in base 8) to decimal, we use the formula: \[ \text{Decimal Value} = d_1 \times b^1 + d_0 \times b^0 \] where \( d_1 \) and \( d_0 \) are the digits of the number and \( b \) is the base. For \( (15)_8 \): - \( d_1 = 1 \) (the leftmost digit) - \( d_0 = 5 \) (the rightmost digit) - \( b = 8 \) Calculating: \[ (15)_8 = 1 \times 8^1 + 5 \times 8^0 = 1 \times 8 + 5 \times 1 = 8 + 5 = 13 \] So, \( (15)_8 = 13 \) in decimal. ### Step 2: Convert \( (15)_{10} \) to Decimal Since \( (15)_{10} \) is already in decimal, we have: \[ (15)_{10} = 15 \] ### Step 3: Convert \( (15)_{16} \) to Decimal To convert \( (15)_{16} \) (which is in base 16) to decimal, we use the same formula: For \( (15)_{16} \): - \( d_1 = 1 \) - \( d_0 = 5 \) - \( b = 16 \) Calculating: \[ (15)_{16} = 1 \times 16^1 + 5 \times 16^0 = 1 \times 16 + 5 \times 1 = 16 + 5 = 21 \] So, \( (15)_{16} = 21 \) in decimal. ### Step 4: Substitute Values into the Function Now we have: - \( x = (15)_8 = 13 \) - \( y = (15)_{10} = 15 \) - \( z = (15)_{16} = 21 \) Substituting these values into the function \( f(x, y, z) \): \[ f(13, 15, 21) = 13 + 15 - 21 \] ### Step 5: Calculate the Result Now we perform the arithmetic: \[ 13 + 15 = 28 \] \[ 28 - 21 = 7 \] Thus, the final answer is: \[ f((15)_{8}, (15)_{10}, (15)_{16}) = 7 \]
Promotional Banner