Home
Class 14
MATHS
If (101)2 + (1100)2 div (10)2 = (z)10 , ...

If `(101)_2 + (1100)_2 div (10)_2 = (z)_10` , then what is the value of `z` ?

A

8

B

9

C

10

D

11

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation `(101)_2 + (1100)_2 ÷ (10)_2 = (z)_10`, we will follow these steps: ### Step 1: Convert Binary Numbers to Decimal 1. **Convert `(101)_2` to decimal:** - The binary number `(101)_2` can be calculated as follows: \[ 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 1 \times 4 + 0 \times 2 + 1 \times 1 = 4 + 0 + 1 = 5 \] So, `(101)_2 = 5_{10}`. 2. **Convert `(1100)_2` to decimal:** - The binary number `(1100)_2` can be calculated as follows: \[ 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 0 \times 2^0 = 1 \times 8 + 1 \times 4 + 0 \times 2 + 0 \times 1 = 8 + 4 + 0 + 0 = 12 \] So, `(1100)_2 = 12_{10}`. 3. **Convert `(10)_2` to decimal:** - The binary number `(10)_2` can be calculated as follows: \[ 1 \times 2^1 + 0 \times 2^0 = 1 \times 2 + 0 \times 1 = 2 + 0 = 2 \] So, `(10)_2 = 2_{10}`. ### Step 2: Substitute Decimal Values into the Equation Now substitute the decimal values we found into the equation: \[ 5 + 12 \div 2 = z \] ### Step 3: Perform Division Next, we perform the division: \[ 12 \div 2 = 6 \] ### Step 4: Perform Addition Now, substitute the result back into the equation: \[ 5 + 6 = z \] ### Step 5: Calculate the Final Value of z Finally, calculate the value of \( z \): \[ z = 11 \] Thus, the value of \( z \) is \( 11 \). ### Summary The final answer is: \[ z = 11 \]
Promotional Banner