Home
Class 14
MATHS
Simplify 2 + 3 xx (1)/(3) " of " 2 xx (6...

Simplify `2 + 3 xx (1)/(3) " of " 2 xx (6 xx (1)/(2))- [5- {(5)/(8) + 3 (3)/(8)-(1)/(8)}]`

A

6

B

`55//8`

C

8

D

`77/6`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \( 2 + 3 \times \frac{1}{3} \text{ of } 2 \times (6 \times \frac{1}{2}) - \left[ 5 - \left( \frac{5}{8} + 3 \frac{3}{8} - \frac{1}{8} \right) \right] \), we will follow these steps: ### Step 1: Simplify the expression inside the brackets We start with the expression inside the brackets: \[ 5 - \left( \frac{5}{8} + 3 \frac{3}{8} - \frac{1}{8} \right) \] First, we need to simplify \( 3 \frac{3}{8} \): \[ 3 \frac{3}{8} = \frac{3 \times 3 + 3}{8} = \frac{9 + 3}{8} = \frac{12}{8} = \frac{3}{2} \] Now, we can rewrite the expression: \[ 5 - \left( \frac{5}{8} + \frac{12}{8} - \frac{1}{8} \right) \] Combine the fractions: \[ \frac{5}{8} + \frac{12}{8} - \frac{1}{8} = \frac{5 + 12 - 1}{8} = \frac{16}{8} = 2 \] So we have: \[ 5 - 2 = 3 \] ### Step 2: Substitute back into the main expression Now substitute back into the main expression: \[ 2 + 3 \times \frac{1}{3} \text{ of } 2 \times (6 \times \frac{1}{2}) - 3 \] ### Step 3: Simplify the multiplication Next, we simplify \( 3 \times \frac{1}{3} \): \[ 3 \times \frac{1}{3} = 1 \] Now, we simplify \( 6 \times \frac{1}{2} \): \[ 6 \times \frac{1}{2} = 3 \] So, we can rewrite the expression as: \[ 2 + 1 \text{ of } 2 \times 3 - 3 \] ### Step 4: Calculate the "of" operation The "of" operation means multiplication, so: \[ 1 \text{ of } 2 \times 3 = 1 \times 2 \times 3 = 6 \] ### Step 5: Substitute and simplify Now substitute this back into the expression: \[ 2 + 6 - 3 \] ### Step 6: Final calculation Now perform the addition and subtraction: \[ 2 + 6 = 8 \] \[ 8 - 3 = 5 \] Thus, the simplified expression is: \[ \boxed{5} \]
Promotional Banner