Home
Class 11
MATHS
The inverse of the function f(x)=(e^(x)-...

The inverse of the function `f(x)=(e^(x)-e^(-x))/(e^(x)+e^(-x))+2` is given by :

A

`-2log_e((x-1)/(x+1))`

B

`1/2log_e((x-2)/(x-1))`

C

`1/2log_e((x+1)/(3-x))`

D

`1/2log_e((x-1)/(3-x))`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

Integrate the functions (e^(2x)-e^(-2x))/(e^(2x)+e^(-2x))

int(e^(2x) - e^(-2x))/(e^(2x) + e^(-2x)) dx .

Integrate the functions x^(2)e^(x)

Integrate the functions (e^(x))/((1+e^(x))(2+e^(x)))

int ((e^(x)-e^(-x))dx)/((e^(x) + e^(-x)) log (cosh x) =

Integrate the functions x(e^(x^(2)))

int (dx)/(e^(x)+e^(-x)) dx =

Integrate the functions ((x-3)e^(x))/((x-1)^(3))

If y = (e^(x)+e^(-x))/(e^(x)-e^(-x)) then is equal to...